luogu P3264 [JLOI2015]管道连接
LINK:管道连接
一张无向图 有P个关键点 其中有K个集合 各个集合要在图中形成联通块 边有边权 求最小代价。
其实还是生成树问题 某个点要和某个点要在生成树中 类似这个意思。
可以发现 是斯坦纳树问题。但是有些集合是不必要连起来的 我们可以使用子集合并 将一些状态给合并起来。
例如 我们设f[i][s]表示到达某个点形成的位置集合为s的最小代价可以发现s之中全部都是联通的 但是s之中可能可以不连通 但是我们让其强行联通 最后再将联通的状态合并起来 就是答案了。
(说白了其实是进行状态强制合并dp 这个很容易搞 可以直接枚举子集 或者 直接枚举p进行转移会更高效。
真的不作就不会死 spfa 直接秒过 写了个dij上去只有40 开o2才过 果然 稀疏图中spfa跑的超快的好吧 它还没死。
const int MAXN=3010,maxn=11;
int n,m,p,len,l,r;
int s[maxn],id[MAXN],f[MAXN][1<<maxn],vis[MAXN],g[1<<maxn];
int q[MAXN*MAXN];
int lin[MAXN],nex[MAXN<<1],ver[MAXN<<1],e[MAXN<<1];
inline void add(int z,int x,int y)
{
ver[++len]=y;nex[len]=lin[x];lin[x]=len;e[len]=z;
ver[++len]=x;nex[len]=lin[y];lin[y]=len;e[len]=z;
}
inline void spfa(int s)
{
while(++l<=r)
{
int x=q[l];vis[x]=0;
go(x)
{
if(f[tn][s]>f[x][s]+e[i])
{
f[tn][s]=f[x][s]+e[i];
if(!vis[tn])vis[tn]=1,q[++r]=tn;
}
}
}
}
int main()
{
freopen("1.in","r",stdin);
get(n);get(m);get(p);
memset(f,0x3f,sizeof(f));
memset(g,0x3f,sizeof(g));
rep(1,m,i)add(read(),read(),read());
rep(1,p,i)
{
int x,y;
get(x);get(y);
s[x]|=(1<<(i-1));
id[y]=i;f[y][1<<(i-1)]=0;
}
int maxx=(1<<p)-1;
rep(1,maxx,i)
{
l=r=0;
rep(1,n,j)
{
for(int s=i;s;s=i&(s-1))
f[j][i]=min(f[j][i],f[j][s]+f[j][s^i]);
if(f[j][i]<INF)q[++r]=j,vis[j]=1;
g[i]=min(g[i],f[j][i]);
}
spfa(i);
}
rep(1,maxx,i)
{
rep(1,p,j)
{
if(!s[j])continue;
if((i&s[j])!=s[j])continue;
g[i]=min(g[i],g[i^s[j]]+g[s[j]]);
}
}
put(g[maxx]);
return 0;
}
luogu P3264 [JLOI2015]管道连接的更多相关文章
- BZOJ 4006 Luogu P3264 [JLOI2015]管道连接 (斯坦纳树、状压DP)
题目链接: (bzoj)https://www.lydsy.com/JudgeOnline/problem.php?id=4006 (luogu)https://www.luogu.org/probl ...
- 洛谷P3264 [JLOI2015]管道连接(斯坦纳树)
传送门 感觉对斯坦纳树还是有很多疑惑啊…… 等到时候noip没有爆零的话再回来填坑好了 //minamoto #include<iostream> #include<cstdio&g ...
- 洛谷P3264 [JLOI2015]管道连接 (斯坦纳树)
题目链接 题目大意:有一张无向图,每条边有一定的花费,给出一些点集,让你从中选出一些边,用最小的花费将每个点集内的点相互连通,可以使用点集之外的点(如果需要的话). 算是斯坦纳树的入门题吧. 什么是斯 ...
- BZOJ4006 JLOI2015 管道连接(斯坦纳树生成森林)
4006: [JLOI2015]管道连接 Time Limit: 30 Sec Memory Limit: 128 MB Description 小铭铭最近进入了某情报部门,该部门正在被如何建立安全的 ...
- BZOJ_4006_[JLOI2015]管道连接_斯坦纳树
BZOJ_4006_[JLOI2015]管道连接_斯坦纳树 题意: 小铭铭最近进入了某情报部门,该部门正在被如何建立安全的通道连接困扰. 该部门有 n 个情报站,用 1 到 n 的整数编号.给出 m ...
- [BZOJ4006][JLOI2015]管道连接 状压dp+斯坦纳树
4006: [JLOI2015]管道连接 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 1020 Solved: 552[Submit][Statu ...
- [bzoj4006][JLOI2015]管道连接_斯坦纳树_状压dp
管道连接 bzoj-4006 JLOI-2015 题目大意:给定一张$n$个节点$m$条边的带边权无向图.并且给定$p$个重要节点,每个重要节点都有一个颜色.求一个边权和最小的边集使得颜色相同的重要节 ...
- [JLOI2015]管道连接
题目描述 小铭铭最近进入了某情报部门,该部门正在被如何建立安全的通道连接困扰.该部门有 n 个情报站,用 1 到 n 的整数编号.给出 m 对情报站 ui;vi 和费用 wi,表示情报站 ui 和 v ...
- bzoj 4006: [JLOI2015]管道连接
Description 小铭铭最近进入了某情报部门,该部门正在被如何建立安全的通道连接困扰. 该部门有 n 个情报站,用 1 到 n 的整数编号.给出 m 对情报站 ui;vi 和费用 wi,表示情 ...
随机推荐
- Java基础-网络编程1
网络编程 Socket 基本概念 C/S结构 :全称为Client/Server结构,是指客户端和服务器结构.常见程序有QQ.迅雷等软件. B/S结构 :全称为Browser/Server结构,是指浏 ...
- 洛谷 P2607 [ZJOI2008]骑士 树形DP
题目描述 Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各 界的赞扬.最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争.战火绵延五百里, ...
- CSS让一个图片显示在另一个图片上面
思路,在两个图片的父元素上设置 position:relative , 然后给小图片设置 position:absolute ,位置通过top,bottom,left,right来修改,然后用 ...
- 古有七步成诗,今有六步完成DevOps上华为云DevCloud实践
引言: 在“DevOps能力之屋(Capabilities House of DevOps)”中,华为云DevCloud提出(工程方法+最佳实践+生态)×工具平台=DevOps能力.华为云DevClo ...
- day69 cookie与session
目录 一.forms源码解析 二.cookie与session发展史 三.cookie操作 四.session操作 五.CBV如何添加装饰器 一.forms源码解析 # from组件的切入点是is_v ...
- Linux上运行安卓应用:安装使用Anbox
文章目录 #0x0 简介 #0x1 安装教程 #0x11 第一步,安装需要的内核模块 #0x12 安装Anbox #0x2 使用Anbox #0x21 一些简单的设置 #0x22 安装APK #0x3 ...
- java 面向对象(三十一):异常(四) 自定义异常类
如何自定义一个异常类?/* * 如何自定义异常类? * 1. 继承于现的异常结构:RuntimeException .Exception * 2. 提供全局常量:serialVersionUID * ...
- Python之爬虫(七)正则的基本使用
什么是正则表达式 正则表达式是对字符串操作的一种逻辑公式,就是 事先定义好的一些特定字符.及这些特定字符的组合,组成一个“规则字符”,这个“规则字符” 来表达对字符的一种过滤逻辑. 正则并不是pyth ...
- 记一次开发CefSharp做浏览器时Facebook广告页支付方式绑定不上Paypal问题
问题:用CefSharp做浏览器开发.在做Facebook广告页面绑定Paypal支付方式时出现了绑定不上的问题. 让我们来还原问题的步骤: 第一步登录Facebook. 第二步进入广告绑卡页面选择P ...
- Linux 通过源代码安装和编译程序
Linux源代码安装在平常工作学习中经常用到,总结下步骤↓↓↓ 第一步:#mount /dev/cdrom/mnt (挂载一个软盘) 第二步:手动安装httpd-2.4.25.tar.gz 依赖关系包 ...