POJ1274 The Perfect Stall[二分图最大匹配]
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 23911 | Accepted: 10640 |
Description
Given the preferences of the cows, compute the maximum number of milk-producing assignments of cows to stalls that is possible.
Input
Output
Sample Input
5 5
2 2 5
3 2 3 4
2 1 5
3 1 2 5
1 2
Sample Output
4
Source
裸hungary
http://www.renfei.org/blog/bipartite-matching.html匹配:在图论中,一个「匹配」(matching)是一个边的集合,其中任意两条边都没有公共顶点。最大匹配:一个图所有匹配中,所含匹配边数最多的匹配,称为这个图的最大匹配。
完美匹配:如果一个图的某个匹配中,所有的顶点都是匹配点,那么它就是一个完美匹配。显然,完美匹配一定是最大匹配(完美匹配的任何一个点都已经匹配,添加一条新的匹配边一定会与已有的匹配边冲突)。但并非每个图都存在完美匹配。
交替路:从一个未匹配点出发,依次经过非匹配边、匹配边、非匹配边...形成的路径叫交替路。
增广路:从一个未匹配点出发,走交替路,如果途径另一个未匹配点(出发的点不算),则这条交替路称为增广路(agumenting path)。
最大匹配数:最大匹配的匹配边的数目
最小点覆盖数:选取最少的点,使任意一条边至少有一个端点被选择
最大独立数:选取最多的点,使任意所选两点均不相连
最小路径覆盖数:对于一个 DAG(有向无环图),选取最少条路径,使得每个顶点属于且仅属于一条路径。路径长可以为 0(即单个点)。定理1:最大匹配数 = 最小点覆盖数(这是 Konig 定理)
定理2:最大匹配数 = 最大独立数
定理3:最小路径覆盖数 = 顶点数 - 最大匹配数
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int N=;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,m,s,u,v;
struct edge{
int v,ne;
}e[N*N<<];
int h[N],cnt=;
inline void ins(int u,int v){
cnt++;
e[cnt].v=v;e[cnt].ne=h[u];h[u]=cnt;
}
int vis[N],le[N];
bool find(int u){
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v;
if(!vis[v]){
vis[v]=;
if(!le[v]||find(le[v])){
le[v]=u;
return true;
}
}
}
return false;
}
int ans=;
void hungary(){
memset(le,,sizeof(le));
for(int i=;i<=n;i++){
memset(vis,,sizeof(vis));
if(find(i)) ans++;
}
}
int main(){
while(scanf("%d%d",&n,&m)!=EOF){
cnt=;
memset(h,,sizeof(h));
for(int i=;i<=n;i++){
s=read();
while(s--){v=read();ins(i,v);}
}
ans=;
hungary();
printf("%d\n",ans);
}
}
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int N=;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,m,s,u,v,g[N][N];
int vis[N],le[N];
bool find(int u){
for(int i=;i<=m;i++) if(g[u][i]&&!vis[i]){
vis[i]=;
if(!le[i]||find(le[i])){
le[i]=u;
return true;
}
}
return false;
}
int ans=;
void hungary(){
memset(le,,sizeof(le));
for(int i=;i<=n;i++){
memset(vis,,sizeof(vis));
if(find(i)) ans++;
}
}
int main(){
while(scanf("%d%d",&n,&m)!=EOF){
memset(g,,sizeof(g));
for(int i=;i<=n;i++){
s=read();
while(s--){v=read();g[i][v]=;}
}
ans=;
hungary();
printf("%d\n",ans);
}
}
POJ1274 The Perfect Stall[二分图最大匹配]的更多相关文章
- POJ1274 The Perfect Stall[二分图最大匹配 Hungary]【学习笔记】
The Perfect Stall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 23911 Accepted: 106 ...
- [POJ] 1274 The Perfect Stall(二分图最大匹配)
题目地址:http://poj.org/problem?id=1274 把每个奶牛ci向它喜欢的畜栏vi连边建图.那么求最大安排数就变成求二分图最大匹配数. #include<cstdio> ...
- poj1274 The Perfect Stall (二分最大匹配)
Description Farmer John completed his new barn just last week, complete with all the latest milking ...
- POJ1274 The Perfect Stall 二分图,匈牙利算法
N头牛,M个畜栏,每头牛仅仅喜欢当中的某几个畜栏,可是一个畜栏仅仅能有一仅仅牛拥有,问最多能够有多少仅仅牛拥有畜栏. 典型的指派型问题,用二分图匹配来做,求最大二分图匹配能够用最大流算法,也能够用匈牙 ...
- POJ1274 The Perfect Stall【二部图最大匹配】
主题链接: id=1274">http://poj.org/problem? id=1274 题目大意: 有N头奶牛(编号1~N)和M个牛棚(编号1~M). 每头牛仅仅可产一次奶.每一 ...
- POJ1274 The Perfect Stall
The Perfect Stall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 25739 Accepted: 114 ...
- POJ1274_The Perfect Stall(二部图最大匹配)
解决报告 http://blog.csdn.net/juncoder/article/details/38136193 id=1274">题目传送门 题意: n头m个机器,求最大匹配. ...
- 洛谷P1894 [USACO4.2]完美的牛栏The Perfect Stall(二分图)
P1894 [USACO4.2]完美的牛栏The Perfect Stall 题目描述 农夫约翰上个星期刚刚建好了他的新牛棚,他使用了最新的挤奶技术.不幸的是,由于工程问题,每个牛栏都不一样.第一个星 ...
- poj--1274--The Perfect Stall(最大匹配)
The Perfect Stall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 21665 Accepted: 973 ...
随机推荐
- windows phone 水印TextBox
原文来自:wp教程网 原理:在失去焦点和获取焦点的时候,判断Text值是否为空或者是否与水印值相同,然后修改TextBox中的Text和Foreground. 代码如下: /* =========== ...
- Linux查看CPU和内存使用情况(转)
在系统维护的过程中,随时可能有需要查看 CPU 使用率,并根据相应信息分析系统状况的需要.在 CentOS 中,可以通过 top 命令来查看 CPU 使用状况.运行 top 命令后,CPU 使用状态会 ...
- No.023:Merge k Sorted Lists
问题: Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexit ...
- PHP工作笔记:使用yii migrate管理、生成数据库
第一步:进入yii migrate 通过dos(我是win7系统,其他系统类似,就是进入字符界面)打开网站目录 phpStudy/WWW/local/ddc_dlss 输入 ./yii migrate ...
- jQuery获取Table-Input控件值封装
- webpack初入
序言:前面已经倒腾了grunt.gulp.fis3,今天来通过一个例子玩玩webpack!最终预览 通过下面的例子,能够了解以下几点: 1.如何安装webpack 2.如何使用webpack 3.如何 ...
- AMD and CMD are dead之KMD.js版本0.0.2发布
更新 正式从UglifyJS切换至UglifyJS2 增加依赖可视化功能 压缩代码更加方便 统一风格:如main的class名也不能省略 优化了kmdjs管道 修复了无数bug 通过src开启debu ...
- SuperMap iServer Ubuntu 开机自启动脚本
在/etc/init.d/文件夹里面设置相关的文件 1.为了保证创建文件的读写权限与默认一致,我们只需要cp一个默认的启动文件即可 2.删除iserver里面的所有信息 提示:直接执行“:1,$d” ...
- ArcGIS JS 学习笔记4 实现地图联动
1.开篇 守望屁股实在太好玩了,所以最近有点懒,这次就先写个简单的来凑一下数.这次我的模仿目标是天地图的地图联动. 天地的地图联动不仅地图有联动,而且鼠标也有联动,我就照着这个目标进行山寨. 2.准备 ...
- IOS开发基础知识--碎片4
十七:返回到主线程进行操作,对UI进行更新只能在主线程进行 /*将数据显示到UI控件,注意只能在主线程中更新UI, 另外performSelectorOnMainThread方法是NSObject的分 ...