• 原题如下:

    Jack Straws
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 5555   Accepted: 2536

    Description

    In the game of Jack Straws, a number of plastic or wooden "straws" are dumped on the table and players try to remove them one-by-one without disturbing the other straws. Here, we are only concerned with if various pairs of straws are connected by a path of touching straws. You will be given a list of the endpoints for some straws (as if they were dumped on a large piece of graph paper) and then will be asked if various pairs of straws are connected. Note that touching is connecting, but also two straws can be connected indirectly via other connected straws.

    Input

    Input consist multiple case,each case consists of multiple lines. The first line will be an integer n (1 < n < 13) giving the number of straws on the table. Each of the next n lines contain 4 positive integers,x1,y1,x2 and y2, giving the coordinates, (x1,y1),(x2,y2) of the endpoints of a single straw. All coordinates will be less than 100. (Note that the straws will be of varying lengths.) The first straw entered will be known as straw #1, the second as straw #2, and so on. The remaining lines of the current case(except for the final line) will each contain two positive integers, a and b, both between 1 and n, inclusive. You are to determine if straw a can be connected to straw b. When a = 0 = b, the current case is terminated.

    When n=0,the input is terminated.

    There will be no illegal input and there are no zero-length straws.

    Output

    You should generate a line of output for each line containing a pair a and b, except the final line where a = 0 = b. The line should say simply "CONNECTED", if straw a is connected to straw b, or "NOT CONNECTED", if straw a is not connected to straw b. For our purposes, a straw is considered connected to itself.

    Sample Input

    7
    1 6 3 3
    4 6 4 9
    4 5 6 7
    1 4 3 5
    3 5 5 5
    5 2 6 3
    5 4 7 2
    1 4
    1 6
    3 3
    6 7
    2 3
    1 3
    0 0 2
    0 2 0 0
    0 0 0 1
    1 1
    2 2
    1 2
    0 0 0

    Sample Output

    CONNECTED
    NOT CONNECTED
    CONNECTED
    CONNECTED
    NOT CONNECTED
    CONNECTED
    CONNECTED
    CONNECTED
    CONNECTED
  • 题解:问题的关键是判断线段是否相交,然后就可以建图进行连接性判断。首先会想到计算两直线的交点然后判断交点是否在线段上的方法,这样问题就变成如何判断点是否在线段上以及如何求两直线的交点。在几何问题中,运用向量的内积和外积进行计算是非常方便的。对于二维向量p1=(x1,y1)和p2=(x2,y2),定义内积p1·p2=x1x2+y1y2,外积p1×p2=x1y2-y1x2。要判断点q是否在线段p1-p2上,只要先根据外积(p1-q)×(p2-q)是否等于0来判断点q是否在直线p1-p2上,再利用内积(p1-q)·(p2-q)是否小于等于0来判断点q是否落在p1-p2之间。而要求两直线的交点,通过变量t将直线p1-p2上的点表示为p1+t(p2-p1),交点又在直线q1-q2上,所以有:(q2-q1)×(p1+t(p2-p1)-q1)=0,于是可以利用下式求得t的值:

    但是,使用这个方法还要注意边界情况,如果两条线段是平行的,也有可能有公共点,可以通过检查端点是否在另一条线段上来判断。
  • 代码:
     #include <cstdio>
    #include <cmath>
    #include <algorithm> using namespace std; const double EPS=1e-; double add(double a, double b)
    {
    if (fabs(a+b)<EPS*(fabs(a)+fabs(b))) return ;
    return a+b;
    } struct P
    {
    double x,y;
    P(){};
    P(double x, double y):x(x),y(y){}
    P operator + (P p)
    {
    return P(add(x, p.x), add(y, p.y));
    }
    P operator - (P p)
    {
    return P(add(x, -p.x), add(y, -p.y));
    }
    P operator * (double d)
    {
    return P(x*d, y*d);
    }
    double dot(P p)
    {
    return add(x*p.x, y*p.y);
    }
    double det(P p)
    {
    return add(x*p.y, -y*p.x);
    }
    }; bool on_seg(P p1, P p2, P q)
    {
    return (p1-q).det(p2-q)== && (p1-q).dot(p2-q)<=;
    } P intersection(P p1, P p2, P q1, P q2)
    {
    return p1+(p2-p1)*((q2-q1).det(q1-p1)/(q2-q1).det(p2-p1));
    } const int MAX_N=;
    const int MAX_M=;
    int n;
    P p[MAX_N], q[MAX_N];
    int m;
    int a[MAX_M], b[MAX_M];
    bool g[MAX_N][MAX_N]; int main()
    {
    while (~scanf("%d", &n) && n)
    {
    fill(g[], g[]+sizeof(bool)**, false);
    for (int i=; i<n; i++)
    {
    scanf("%lf %lf %lf %lf", &p[i].x, &p[i].y, &q[i].x, &q[i].y);
    }
    for (int i=;;i++)
    {
    scanf("%d %d",&a[i], &b[i]);
    if (a[i]== && b[i]==)
    {
    m=i;
    break;
    }
    }
    for (int i=; i<n; i++)
    {
    g[i][i]=true;
    for (int j=; j<i; j++)
    {
    if ((p[i]-q[i]).det(p[j]-q[j])==)
    {
    g[i][j]=g[j][i]=on_seg(p[i], q[i], p[j])
    || on_seg(p[i], q[i], q[j])
    || on_seg(p[j], q[j], p[i])
    || on_seg(p[j], q[j], q[i]);
    }
    else
    {
    P r=intersection(p[i], q[i], p[j], q[j]);
    g[i][j]=g[j][i]=on_seg(p[i], q[i], r) && on_seg(p[j], q[j], r);
    }
    }
    }
    for (int k=; k<n; k++)
    for (int i=; i<n; i++)
    for (int j=; j<n; j++)
    {
    g[i][j] |= g[i][k]&&g[k][j];
    }
    for (int i=; i<m; i++)
    {
    puts(g[a[i]-][b[i]-] ? "CONNECTED" : "NOT CONNECTED");
    }
    }
    }

Jack Straws(POJ 1127)的更多相关文章

  1. Jack Straws POJ - 1127 (简单几何计算 + 并查集)

    In the game of Jack Straws, a number of plastic or wooden "straws" are dumped on the table ...

  2. Jack Straws POJ - 1127 (几何计算)

    Jack Straws Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 5428   Accepted: 2461 Descr ...

  3. Jack Straws(poj 1127) 两直线是否相交模板

    http://poj.org/problem?id=1127   Description In the game of Jack Straws, a number of plastic or wood ...

  4. poj 1127:Jack Straws(判断两线段相交 + 并查集)

    Jack Straws Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2911   Accepted: 1322 Descr ...

  5. poj 1127 -- Jack Straws(计算几何判断两线段相交 + 并查集)

    Jack Straws In the game of Jack Straws, a number of plastic or wooden "straws" are dumped ...

  6. poj1127 Jack Straws(线段相交+并查集)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Jack Straws Time Limit: 1000MS   Memory L ...

  7. 1840: Jack Straws

    1840: Jack Straws 时间限制(普通/Java):1000MS/10000MS     内存限制:65536KByte 总提交: 168            测试通过:129 描述 I ...

  8. TZOJ 1840 Jack Straws(线段相交+并查集)

    描述 In the game of Jack Straws, a number of plastic or wooden "straws" are dumped on the ta ...

  9. poj 1127(直线相交+并查集)

    Jack Straws Description In the game of Jack Straws, a number of plastic or wooden "straws" ...

随机推荐

  1. DAPP开发初探——永存的留言

    转载地址 https://blog.csdn.net/qq_33764491/article/details/80570266 前言 最近DAPP的开发貌似很火,学习了区块链的一些知识之后,相信有很多 ...

  2. MyKTV系统项目的感想

    不粉身碎骨,何以脱胎换骨! 3月11号,我们迎来S1的尾巴.这期间有温暖,默契,有项目.一切刚刚好.刚刚正式接到KTV这个微微型的项目的时候,还是很害怕的,虽然老师在前两天就已经提到也讲到,KTV系统 ...

  3. clients-producer-组包发送消息

  4. 为什么?为什么?Java处理排序后的数组比没有排序的快?想过没有?

    先看再点赞,给自己一点思考的时间,微信搜索[沉默王二]关注这个有颜值却假装靠才华苟且的程序员.本文 GitHub github.com/itwanger 已收录,里面还有我精心为你准备的一线大厂面试题 ...

  5. MIT 6.828 Lab04 : Preemptive Multitasking

    目录 Part A:Multiprocessor Support and Cooperative Multitasking Multiprocessor Support 虚拟内存图 Exercise ...

  6. Spring官方宣布:新的Spring OAuth2.0授权服务器已经来了

    1. 前言 记不记得之前发过一篇文章Spring 官方发起Spring Authorization Server 项目.该项目是由Spring Security主导的一个社区驱动的.独立的孵化项目.由 ...

  7. Deep and Beautiful. The Reward Prediction Error Hypothesis of Dopamine

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! Contents: Abstract 1. Introduction 2. Reward-Prediction Error Meets D ...

  8. Jupyter Notebook 入门指南

    https://www.jianshu.com/p/061c6e5c4b0d cmd输入 :jupyter notebook

  9. 区块链入门到实战(27)之以太坊(Ethereum) – 智能合约开发

    智能合约的优点 与传统合同相比,智能合约有一些显著优点: 不需要中间人 费用低 代码就是规则 区块链网络中有多个备份,不用担心丢失 避免人工错误 无需信任,就可履行协议 匿名履行协议 以太坊(Ethe ...

  10. Java 接口简述

    Java 接口 接口(英文:Interface),在JAVA编程语言中是一个抽象类型,是抽象方法的集合,接口通常以interface来声明.一个类通过继承接口的方式,从而来继承接口的抽象方法. 接口并 ...