题目描述

农场主John新买了一块长方形的新牧场,这块牧场被划分成M行N列(1 ≤ M ≤ 12; 1 ≤ N ≤ 12),每一格都是一块正方形的土地。John打算在牧场上的某几格里种上美味的草,供他的奶牛们享用。

遗憾的是,有些土地相当贫瘠,不能用来种草。并且,奶牛们喜欢独占一块草地的感觉,于是John不会选择两块相邻的土地,也就是说,没有哪两块草地有公共边。

John想知道,如果不考虑草地的总块数,那么,一共有多少种种植方案可供他选择?(当然,把新牧场完全荒废也是一种方案)

输入格式

第一行:两个整数M和N,用空格隔开。

第2到第M+1行:每行包含N个用空格隔开的整数,描述了每块土地的状态。第i+1行描述了第i行的土地,所有整数均为0或1,是1的话,表示这块土地足够肥沃,0则表示这块土地不适合种草。

输出格式

一个整数,即牧场分配总方案数除以100,000,000的余数。

输入输出样例

输入 #1

2 3

1 1 1

0 1 0

输出 #1

9

一道入门的状压dp题,但对于我这种萌新还是太难了,所以写篇博客纪念一下。。。

看到m的范围很小,我们就可以考虑对m进行状态压缩

我们设 \(f[i][j]\) 表示第\(i\)行放置情况为\(j\)的方案数.

我们就可以枚举所有的状态来进行转移

也就是 \(f[i][j] += f[i-1][k]\)

那怎么判断一个状态是否合法呢?

首先,这一行不能选相邻的两列也就是 j & (j<<1) == 0, j & (j>>1) == 0

并且还要与上一行的所选的不能有相邻的即 j & k == 0

那么怎么判断这个状态选的土地是否都合法呢?

我们可以预先处理每一行的初始状态,即对土地能不能选进行状态压缩。

当 s[i] & j == 0 就代表j这个状态可能选了不肥沃的土地。(可以画个图了解一下)

最终答案就是 \(\sum_{i=0}^{i< (1<<m)} f[n][i]\)

代码

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int p = 1e8;
int n,m,ans,x,base[20],f[15][35000],zhuangtai[20],map[20][20];
inline int read()
{
int s = 0, w = 1; char ch = getchar();
while(ch < '0' || ch > '9'){if(ch == '-') w = -1; ch = getchar();}
while(ch >= '0' && ch <= '9'){s = s * 10+ch -'0'; ch = getchar();}
return s * w;
}
bool judge(int x)//判断x这个状态是否合法
{
if(x & (x<<1)) return 0;
if(x & (x>>1)) return 0;
return 1;
}
int main()
{
n = read(); m = read();
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= m; j++)
{
map[i][j] = read();
}
}
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= m; j++)
{
zhuangtai[i] = (zhuangtai[i]<<1) + map[i][j];//把一开始土地能不能选的情况进行状态压缩
}
}
base[0] = 1;
for(int i = 1; i <= m; i++) base[i] = base[i-1] * 2;
f[0][0] = 1;
for(int i = 1; i <= n; i++)
{
for(int j = 0; j < base[m]; j++)
{
if(judge(j) && ((zhuangtai[i] & j) == j))//j这个状态不能选不肥沃的土地
{
for(int k = 0; k < base[m]; k++)
{
if(((j&k) == 0) && judge(k))
{
f[i][j] += f[i-1][k];//转移
f[i][j] %= p;
}
}
}
}
}
for(int i = 0; i < base[m]; i++) ans = (ans + f[n][i]) % p;
printf("%d\n",ans);
return 0;
}

P1879 [USACO06NOV] Corn Fields G的更多相关文章

  1. 【题解】洛谷P1879 [USACO06NOV] Corn Fields(状压DP)

    洛谷P1879:https://www.luogu.org/problemnew/show/P1879 思路 把题目翻译成人话 在n*m的棋盘 每个格子不是0就是1 1表示可以种 0表示不能种 相邻的 ...

  2. 状压 DP:[USACO06NOV] Corn Fields,[USACO13NOV] No Change

    [USACO06NOV] Corn Fields (试题来源:Link ) 题目描述 Farmer John has purchased a lush new rectangular pasture ...

  3. [USACO06NOV] Corn Fields

    https://www.luogu.org/problem/show?pid=1879 题目描述 Farmer John has purchased a lush new rectangular pa ...

  4. P1879 [USACO06NOV]玉米田Corn Fields(状压dp)

    P1879 [USACO06NOV]玉米田Corn Fields 状压dp水题 看到$n,m<=12$,肯定是状压鸭 先筛去所有不合法状态,蓝后用可行的状态跑一次dp就ok了 #include& ...

  5. 状压DP【洛谷P1879】 [USACO06NOV]玉米田Corn Fields

    P1879 [USACO06NOV]玉米田Corn Fields 农场主John新买了一块长方形的新牧场,这块牧场被划分成M行N列(1 ≤ M ≤ 12; 1 ≤ N ≤ 12),每一格都是一块正方形 ...

  6. C++ 洛谷 P1879 [USACO06NOV]玉米田Corn Fields

    没学状压DP的看一下 合法布阵问题  P1879 [USACO06NOV]玉米田Corn Fields 题意:给出一个n行m列的草地(n,m<=12),1表示肥沃,0表示贫瘠,现在要把一些牛放在 ...

  7. 洛谷 P1879 [USACO06NOV]玉米田Corn Fields 题解

    P1879 [USACO06NOV]玉米田Corn Fields 题目描述 Farmer John has purchased a lush new rectangular pasture compo ...

  8. 洛谷P1879 [USACO06NOV]玉米田Corn Fields(状压dp)

    洛谷P1879 [USACO06NOV]玉米田Corn Fields \(f[i][j]\) 表示前 \(i\) 行且第 \(i\) 行状态为 \(j\) 的方案总数.\(j\) 的大小为 \(0 \ ...

  9. 【洛谷P1879】玉米田Corn Fields

    玉米田Corn Fields 题目链接 此题和互不侵犯状压DP的做法类似 f[i][j]表示前i行,第i行种植(1)/不种植(0)构成的二进制数为j时的方案数 首先我们可以预处理出所有一行中没有两个相 ...

随机推荐

  1. 【转】Android DrawingCache

    转自:http://magiclen.org/android-drawingcache/ 日期: 2014 年 8 月 27 日 | 作者: Magic Len 開發Android的時候,在許多情況下 ...

  2. Content Security Policy (CSP)内容安全策略总结

    跨域脚本攻击 XSS 是最常见.危害最大的网页安全漏洞. 为了防止它们,要采取很多编程措施,非常麻烦.很多人提出,能不能根本上解决问题,浏览器自动禁止外部注入恶意脚本?这就是"网页安全政策& ...

  3. 09. jenkins配置不同用户显示不同视图

    jenkins配置不同用户显示不同视图 一.新建用户 1.1 新建用户 Manage Jenkins -> Manage Users -> 新建用户     1.2 我创建了三个用户,分别 ...

  4. 用笛卡尔积来创建一千六百万大表 整体19分钟 大表建成两分钟 设置id13分钟

    昨天拙文中讲述了用自增方式创建一千六百万大表的方案,这回讨论的是用笛卡儿积,实践证明这种方案更快. 2020年3月15日08点58分实验开始 创建仅有四千数据的tb_4thousand1表: SQL& ...

  5. 20190916-01linux文件与目录结构 000 001

    1./bin 是Binary的缩写,这个目录存放着最经常使用的命令 2./sbin s就是Super User的意思,这里存放的是系统管理员使用的系统管理程序 3./home 存放普通用户的主目录,在 ...

  6. 2020BJDCTF

    diff: 不得不说这种题目挺有意思的,现在记录一下阶梯过程: 先登录远程,发现有两个文件: 虽然直接能卡到flag文件,但是我们是以ctf用户登录的,并不能直接打开flag文件.仔细观察diff文件 ...

  7. Java简介以及入门

    JAVA基础知识 Java简介 作者:詹姆斯·高斯林(James Gosling) Java是一门面向对象编程语言,不仅吸收了C++语言的各种优点,还摒弃了C++里难以理解的多继承.指针等概念,因此J ...

  8. mysql1045问题解决

    输入mysql -u root -P 1202 -h localhost -p时报错mysql1045 解决方法:my.ini中加上skip-grant-tables后重启mysql服务即可解决

  9. IDEA 2020.2安装破解版教程激活码注册码破解补丁 for Mac Windows Linux-中关村老大爷

    IntelliJ Idea Ultimate 2020.2.x版软件最新安装破解版教程方法,本教程提供Idea Ultimate 2020.2版安装包,破解补丁,激活码,亲测100%完美破解激活,支持 ...

  10. 抢先学鸿蒙(HarmonyOS)2.0,你就是下一个大咖!

        1. 你不知道的鸿蒙(HarmonyOS)   2020年9月10日,华为开发者大会发布了鸿蒙(HarmonyOS)2.0.我在2020-9-11日也发布了全球首套鸿蒙2.0 App开发视频课 ...