好久没写博客了(都怪作业太多,绝对不是我玩的太嗨了)

所以今天要写的是一个高大上的东西:强连通

首先,是一些强连通相关的定义  //来自度娘

1.强连通图(Strongly Connected Graph)是指在有向图G中,如果对于每一对vi、vj,vi≠vj,从vi到vj和从vj到vi都存在路径,则称G是强连通图。

2.有向图的极大强连通子图,称为强连通分量(strongly connected components)。

当然,看定义是肯定看不懂的,所以,我举个栗子说明一下

我们以下图为例,这是一个特别经典的强连通图,三个被框起来的地方就分别是三个强连通分量

我们DFS一下,从一出发,我们从右至左遍历,所以路径便是1——>3——>5——>6,到了6,我们发现无路可走了,就回到5,而6不能到达任何一个点,所以它独自为一个强连通分量。同理,5也是一个强连通分量。而1——>3——>4——>1——>2,可以互相到达,所以这又是一个强连通分量。

Tarjan算法

接下来,就是一个在强连通中,常用的一个算法。

Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树。搜索时,把当前搜索树中未处理的节点加入一个堆栈,回溯时可以判断栈顶到栈中的节点是否为一个强连通分量。

定义DFN(u)为节点u搜索的次序编号(时间戳),Low(u)为u或u的子树能够追溯到的最早的栈中节点的次序号。

当DFN(u)=Low(u)时,以u为根的搜索子树上所有节点是一个强连通分量。

接下来演示一下算法:

从1开始DFS,把遍历到的节点加入栈中。搜索到节点u=6时,DFN[6]=LOW[6],找到了一个强连通分量。退栈到u=v为止,{6}为一个强连通分量。

返回到5,发现DFN[5]=LOW[5],退栈后{5}为一个强连通分量。

继续回到1,最后访问2。访问边(2,4),4还在栈中,所以LOW[2]=DFN[4]=5。返回1后,发现DFN[1]=LOW[1],把栈中节点全部取出,组成一个连通分量{1,3,4,2}。

所以,三个强连通分量全部都找出来了。

模板如下:

 void Tarjan(int u){
dfn[u]=low[u]=++num;
st[++top]=u;
for (int i=fir[u]; i; i=nex[i]){
int v=to[i];
if (!dfn[v]){
Tarjan(v);
low[u]=min(low[u],low[v]);
}
else if (!co[v])
low[u]=min(low[u],dfn[v]);
}
if (low[u] == dfn[u]){
co[u]=++col;
while (st[top]!=u){
co[st[top]]=col;
--top;
}
--top;
}
}

【有向图】强连通分量-Tarjan算法的更多相关文章

  1. 有向图强连通分量 Tarjan算法

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...

  2. 有向图强连通分量Tarjan算法

    在https://www.byvoid.com/zhs/blog/scc-tarjan中关于Tarjan算法的描述非常好,转述如下: 首先解释几个概念: 有向图强连通分量:在有向图G中,如果两个顶点间 ...

  3. 图的连通性:有向图强连通分量-Tarjan算法

    参考资料:http://blog.csdn.net/lezg_bkbj/article/details/11538359 上面的资料,把强连通讲的很好很清楚,值得学习. 在一个有向图G中,若两顶点间至 ...

  4. 强连通分量——tarjan算法

    概念: 有向图强连通分量:在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶点强连通.如果有向图G的每两个顶点都强连 ...

  5. [有向图的强连通分量][Tarjan算法]

    https://www.byvoid.com/blog/scc-tarjan 主要思想 Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树.搜索时,把当前搜索树中未处理的 ...

  6. 图之强连通、强连通图、强连通分量 Tarjan算法

    原文地址:https://blog.csdn.net/qq_16234613/article/details/77431043 一.解释 在有向图G中,如果两个顶点间至少存在一条互相可达路径,称两个顶 ...

  7. 图论-强连通分量-Tarjan算法

    有关概念: 如果图中两个结点可以相互通达,则称两个结点强连通. 如果有向图G的每两个结点都强连通,称G是一个强连通图. 有向图的极大强连通子图(没有被其他强连通子图包含),称为强连通分量.(这个定义在 ...

  8. POJ1236_A - Network of Schools _强连通分量::Tarjan算法

    Time Limit: 1000MS   Memory Limit: 10000K Description A number of schools are connected to a compute ...

  9. 求图的强连通分量--tarjan算法

    一:tarjan算法详解 ◦思想: ◦ ◦做一遍DFS,用dfn[i]表示编号为i的节点在DFS过程中的访问序号(也可以叫做开始时间)用low[i]表示i节点DFS过程中i的下方节点所能到达的开始时间 ...

随机推荐

  1. italic和oblique的区别

    italic和oblique都是向右倾斜的文字, 但区别在于Italic是指斜体字,而Oblique是倾斜的文字(让没有斜体属性的文字倾斜), 对于没有斜体的字体应该使用Oblique属性值来实现倾斜 ...

  2. 题解 洛谷 P6351 【[PA2011]Hard Choice】

    删边操作不好处理,所以先将操作倒序,将删边转化为加边. 考虑对于两个点的询问,若这两点不连通或这两个点分别处于两个不同的边双连通分量中(两点间存在桥)时,是不满足题目要求的. 可以用\(LCT\)来维 ...

  3. Netty 学习笔记(2) ------ 数据传输载体ByteBuf

    Netty中读写以ByteBuf为载体进行交互 ByteBuf的结构 ByteBuf以readerIndex和writerIndex划分为三块区域,废弃字节,可读字节,可写字节.每次从ByteBuf读 ...

  4. 分布式锁(2) ----- 基于redis的分布式锁

    分布式锁系列文章 分布式锁(1) ----- 介绍和基于数据库的分布式锁 分布式锁(2) ----- 基于redis的分布式锁 分布式锁(3) ----- 基于zookeeper的分布式锁 代码:ht ...

  5. python txt装换成excel

    工作中,我们需要经常吧一些导出的数据文件,例如sql查出来的结果装换成excel,用文件发送.这次为大家带上python装换excel的脚本 记得先安装wlwt模块,适用版本,python2-3 #c ...

  6. JVM系列之:String.intern的性能

    目录 简介 String.intern和G1字符串去重的区别 String.intern的性能 举个例子 简介 String对象有个特殊的StringTable字符串常量池,为了减少Heap中生成的字 ...

  7. 微服务迁移记(五):WEB层搭建(4)-简单的权限管理

    一.redis搭建 二.WEB层主要依赖包 三.FeignClient通用接口 以上三项,参考<微服务迁移记(五):WEB层搭建(1)> 四.SpringSecurity集成 参考:< ...

  8. Python 数字类型转换

    Python数字类型转换: int(x):将 x 转换为一个整数 float(x):将 x 转换为一个浮点数 complex(x,y):将 x 和 y 转换为一个复数.x 为复数的实部,y 为复数的虚 ...

  9. PHP count_chars() 函数

    实例 返回一个字符串,包含所有在 "Hello World!" 中使用过的不同字符(模式 3): <?php高佣联盟 www.cgewang.com$str = " ...

  10. P4491 [HAOI2018]染色 广义容斥 NTT 生成函数

    LINK:染色 算是比较常规的广义容斥. 算恰好k个 可以直接转成至少k个. 至少k个非常的好求 直接生成函数. 设\(g_k\)表示至少有k个颜色是满足的 那么有 \(g_k=C(m,k)\frac ...