好久没写博客了(都怪作业太多,绝对不是我玩的太嗨了)

所以今天要写的是一个高大上的东西:强连通

首先,是一些强连通相关的定义  //来自度娘

1.强连通图(Strongly Connected Graph)是指在有向图G中,如果对于每一对vi、vj,vi≠vj,从vi到vj和从vj到vi都存在路径,则称G是强连通图。

2.有向图的极大强连通子图,称为强连通分量(strongly connected components)。

当然,看定义是肯定看不懂的,所以,我举个栗子说明一下

我们以下图为例,这是一个特别经典的强连通图,三个被框起来的地方就分别是三个强连通分量

我们DFS一下,从一出发,我们从右至左遍历,所以路径便是1——>3——>5——>6,到了6,我们发现无路可走了,就回到5,而6不能到达任何一个点,所以它独自为一个强连通分量。同理,5也是一个强连通分量。而1——>3——>4——>1——>2,可以互相到达,所以这又是一个强连通分量。

Tarjan算法

接下来,就是一个在强连通中,常用的一个算法。

Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树。搜索时,把当前搜索树中未处理的节点加入一个堆栈,回溯时可以判断栈顶到栈中的节点是否为一个强连通分量。

定义DFN(u)为节点u搜索的次序编号(时间戳),Low(u)为u或u的子树能够追溯到的最早的栈中节点的次序号。

当DFN(u)=Low(u)时,以u为根的搜索子树上所有节点是一个强连通分量。

接下来演示一下算法:

从1开始DFS,把遍历到的节点加入栈中。搜索到节点u=6时,DFN[6]=LOW[6],找到了一个强连通分量。退栈到u=v为止,{6}为一个强连通分量。

返回到5,发现DFN[5]=LOW[5],退栈后{5}为一个强连通分量。

继续回到1,最后访问2。访问边(2,4),4还在栈中,所以LOW[2]=DFN[4]=5。返回1后,发现DFN[1]=LOW[1],把栈中节点全部取出,组成一个连通分量{1,3,4,2}。

所以,三个强连通分量全部都找出来了。

模板如下:

 void Tarjan(int u){
dfn[u]=low[u]=++num;
st[++top]=u;
for (int i=fir[u]; i; i=nex[i]){
int v=to[i];
if (!dfn[v]){
Tarjan(v);
low[u]=min(low[u],low[v]);
}
else if (!co[v])
low[u]=min(low[u],dfn[v]);
}
if (low[u] == dfn[u]){
co[u]=++col;
while (st[top]!=u){
co[st[top]]=col;
--top;
}
--top;
}
}

【有向图】强连通分量-Tarjan算法的更多相关文章

  1. 有向图强连通分量 Tarjan算法

    [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...

  2. 有向图强连通分量Tarjan算法

    在https://www.byvoid.com/zhs/blog/scc-tarjan中关于Tarjan算法的描述非常好,转述如下: 首先解释几个概念: 有向图强连通分量:在有向图G中,如果两个顶点间 ...

  3. 图的连通性:有向图强连通分量-Tarjan算法

    参考资料:http://blog.csdn.net/lezg_bkbj/article/details/11538359 上面的资料,把强连通讲的很好很清楚,值得学习. 在一个有向图G中,若两顶点间至 ...

  4. 强连通分量——tarjan算法

    概念: 有向图强连通分量:在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶点强连通.如果有向图G的每两个顶点都强连 ...

  5. [有向图的强连通分量][Tarjan算法]

    https://www.byvoid.com/blog/scc-tarjan 主要思想 Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树.搜索时,把当前搜索树中未处理的 ...

  6. 图之强连通、强连通图、强连通分量 Tarjan算法

    原文地址:https://blog.csdn.net/qq_16234613/article/details/77431043 一.解释 在有向图G中,如果两个顶点间至少存在一条互相可达路径,称两个顶 ...

  7. 图论-强连通分量-Tarjan算法

    有关概念: 如果图中两个结点可以相互通达,则称两个结点强连通. 如果有向图G的每两个结点都强连通,称G是一个强连通图. 有向图的极大强连通子图(没有被其他强连通子图包含),称为强连通分量.(这个定义在 ...

  8. POJ1236_A - Network of Schools _强连通分量::Tarjan算法

    Time Limit: 1000MS   Memory Limit: 10000K Description A number of schools are connected to a compute ...

  9. 求图的强连通分量--tarjan算法

    一:tarjan算法详解 ◦思想: ◦ ◦做一遍DFS,用dfn[i]表示编号为i的节点在DFS过程中的访问序号(也可以叫做开始时间)用low[i]表示i节点DFS过程中i的下方节点所能到达的开始时间 ...

随机推荐

  1. spring +ActiveMQ 实战 topic selecter指定接收

    spring +ActiveMQ 实战 topic selecter指定接收 queue:点对点模式,一个消息只能由一个消费者接受 topic:一对多,发布/订阅模式,需要消费者都在线(可能会导致信息 ...

  2. maven项目打包到本地库 两种方式

    方式一 1.项目根路径下 maven clean package 或者 maven package ,根据是否需要跳过代码中的测试代码 加上 -DskipTests 2.mvn install:ins ...

  3. sed 指定行范围匹配

    sed -n '5,10{/pattern/p}' file sed是一个非交互性性文本编辑器,它编辑文件或标准输入 导出的文件拷贝.标准输入可能是来自键盘.文件重定向.字符串或变量,或者是一个管道文 ...

  4. Nginx与Apache简单对比

    Nginx 1.轻量级,采用C进行编写,同样的 web 服务,会占用更少的内存及资源 2.抗并发,处理请求是异步非阻塞的,负载能力比apache高很多,而 apache 则是阻塞型的.在高并发下 ng ...

  5. Android中Fragment生命周期和基本用法

    1.基本概念 1. Fragment是什么? Fragment是可以让你的app纵享丝滑的设计,如果你的app想在现在基础上性能大幅度提高,并且占用内存降低,同样的界面Activity占用内存比Fra ...

  6. Java Web(5)-Servlet详解(下)

    一.HttpServletRequest 类 1. HttpServletRequest 类作用? 每次只要有请求进入 Tomcat 服务器,Tomcat 服务器就会把请求过来的 HTTP 协议信息解 ...

  7. springboot整合邮件发送(163邮箱发送为例)

    先登录163邮箱获取授权  勾选后安装提示会叫你设置授权密码之类的:记住授权的密码 1.引入maven依赖 <dependency> <groupId>org.springfr ...

  8. 线程_Process实例

    from multiprocessing import Process import os from time import sleep def run_proc(name,age,**kwargs) ...

  9. 5-Pandas之常用的描述性统计函数、汇总函数

    一.常用的描述性统计函数  函数 作用 函数 作用 count 非缺失样本的数量 sum 求和 mean 均值 mad 平均绝对偏差(Mean absolute deviation) median 中 ...

  10. PHP mysqli_refresh() 函数

    定义和用法 mysqli_refresh() 函数刷新表或缓存,或者重置复制服务器信息.高佣联盟 www.cgewang.com 语法 mysqli_refresh(connection,option ...