vector总结
vector是不定长数组,具有静态数组的稳定性和动态分配内存的灵活性,在赛场上不失为指针之外牺牲部分时间的保险之举。
本文先介绍一些vector常用的函数(部分借鉴一篇博客中的内容 链接),并以此为铺垫,介绍本人在解题过程中对vector用途的一些总结。
vector中迭代器的声明:vector<int>::iterator it;
迭代器的使用方法与指针几乎完全一样,vector中绝大多数带参数的函数参数都有迭代器,很多函数的返回值也是迭代器。
常用函数:
(1)begin,end:
a.begin()返回指向a中第一个元素的迭代器,a.end()返回指向a中最后一个元素的位置的下一个位置的迭代器。
begin和end可以用来遍历,当然for(int i=0;i<a.size();i++)也可以实现,效率完全相同,但在运行一些输入参数为迭代器的函数时,vector的下标就无法解决了。
(2)size,capacity:
a.size()返回a中非空元素个数,a.capacity()返回a所占内存可容纳元素的个数。
(3)clear,resize:
a.clear()是void类型,表示将a中所有元素置空,但不改变a所占内存,即size变为0,capacity不变。
a.resize(x)也是void类型,表示将a的size变为x,capacity变为max(capacity,x)。(好奇怪的操作......)
(4)push_back:
a.pushback(x)是void类型,表示将x插入到a的尾部,size+1。
值得注意的是,a的capacity并不是push_back一次就+1,而是当capacity不够用的时候增大为原来的两倍。即capacity的值只可能是0或2的幂次。在某些极限情况下vector所占内存可以达到预计内存的近似两倍,在做题时要额外注意MLE的风险。
(5)insert:
insert共有三种用法:
1.a.insert(it,val):函数表示在迭代器it指向位置之前插入值为val的元素,返回指向插入元素的迭代器。
2.a.insert(it,num,val):该函数是void类型,表示在迭代器it指向位置之前插入num个值为val的元素。
3.a.insert(it,l,r):该函数是void类型,表示在迭代器it指向位置之前插入从迭代器l指向位置到迭代器r指向位置的前一个位置的元素(即插入某个容器中[l,r)的元素)。
(6)erase:
erase共有两种用法,与insert的第一种和第三种类似。
1.a.erase(it):函数表示删除迭代器it指向的元素,返回指向被删元素的前一个元素的迭代器。
2.a.erase(l,r):函数表示删除从迭代器l指向位置到迭代器r指向位置的前一个位置的元素(即删除a中[l,r)的元素)。
insert的操作3和erase的操作2结合起来使用,可以实现区间的插入,删除,交换。
(7)lower_bound,upper_bound:
lower_bound(l,r,x)中l,r为迭代器,函数返回指向容器[l,r)中第一个大于等于x的元素的迭代器。
upper_bound(l,r,x)中l,r为迭代器,函数返回指向容器[l,r)中第一个大于x的元素的迭代器。
部分用途:
(1)邻接表的替代品
存储一张图的传统做法是邻接矩阵和邻接表。其中邻接矩阵好写,但内存消耗太大,同时找邻接点较慢,且重边问题较难解决;邻接表稍微复杂一些,但找邻接点快,也能解决重边情况。
而vector完全可以替代邻接表:定义vector<int>G[maxn];G[i][j]表示以点i为起点连出的第j条边在边目录中的编号。
若向图中加入一条边(u,v)则只需G[u].push_back(v);即可。遍历点u的邻接点只需遍历u的vector,然后根据u连出的边在边目录中的编号找到终点即可。
代码略。
(2)平衡树(除splay以外)的劣质替代品
平衡树一般用于维护一个序列,支持动态插入,删除一个数,同时查询某数的排名和排名为k的数是多少。
而splay由于其灵活性,还可以实现区间的插入,删除和翻转,它甚至还能实现普通线段树具备的功能。
vector可以以较好的复杂度暴力实现除了splay之外的平衡树能实现的一切操作。
具体操作:将序列中的数插入一个vector,并始终保持其有序,对于被操作的数x,可以用upper_bound或lower_bound在O(logn)内实现定位,随后的排名,前驱后继问题可以O(1)实现,插入删除需要用insert和erase。这两个操作复杂度似乎是O(n),但由于平衡树的题目中各种操作随机进行,且插入和删除的位置也是随机的,vector暴力的速度不会太慢,在数据较小的时候性能可以与平衡树相媲美。
例题:Luogu P3369 【模板】普通平衡树(Treap/SBT)题目链接
题意:写一种数据结构,要求维护一个序列,支持动态插入,删除一个数,同时查询某数的排名和排名为k的数是多少,同时支持查询某数的前驱和后继。
题解:正解是平衡树,当然块状链表也可以A,也可以用vector暴力实现,具体操作见上文。
代码:
1 #include<bits/stdc++.h>
2 using namespace std;
3 vector<int>node;
4 int n;
5 int main()
6 {
7 int i,j,flag,x;
8 vector<int>::iterator pos,l,r;
9 cin>>n;
10 for(i=1;i<=n;i++)
11 {
12 scanf("%d%d",&flag,&x);
13 l=node.begin();r=node.end();
14 if(flag==1){pos=lower_bound(l,r,x);node.insert(pos,x);}
15 else if(flag==2){pos=lower_bound(l,r,x);node.erase(pos);}
16 else if(flag==3){pos=lower_bound(l,r,x);printf("%d\n",pos-l+1);}
17 else if(flag==4){printf("%d\n",*(l+x-1));}
18 else if(flag==5){pos=lower_bound(l,r,x);printf("%d\n",*(pos-1));}
19 else{pos=upper_bound(l,r,x);printf("%d\n",*(pos));}
20 }
21 return 0;
22 }
(3)内存池的另类实现
一些高级数据结构,其本质是两种数据结构的嵌套,最经典的是树套树。在写这类数据结构时经常会MLE,因此在建树时需要动态申请内存,并在删除时动态回收,这时候就需要以指针为基础的内存池。然而指针操作存在极大的不稳定性,经常会调试很长时间。这时候vector就以其静态数组的稳定性和动态分配内存的灵活性占有较大优势。
仍然以普通平衡树为例(树套树太难了不会写QAQ),我们分析平衡树代码会发现,使用静态数组时被删除的节点所在编号并不能复用,如果删除操作多一点时会造成很大的内存浪费。我们可以考虑开一个栈,将被删除的节点编号入栈,在插入节点时首先查看栈顶是否为空,如果不为空就将栈顶编号作为新节点编号,初步解决了问题。
然而,我们不知道在n次操作中平衡树节点最多时有多少个,数组大小仍然没有变化,此时我们需要一个大小随时可增加的数组,将原数组换成vector就可以完美解决问题。栈顶为空时进行push_back,或在长度不够时进行resize都可以解决问题。
代码:
1 #include<bits/stdc++.h>
2 #define lc(x) node[x].ch[0]
3 #define rc(x) node[x].ch[1]
4 #define fa(x) node[x].f
5 using namespace std;
6 const int maxn=1e5+10;
7 struct dot{int ch[2],v,s,w,f;};
8 int n,tot=0,root=0,cap=0;
9 vector<dot>node;
10 stack<int>s;
11 void maintain(int x){node[x].s=node[x].w+node[lc(x)].s+node[rc(x)].s;}
12 int new_node(int v,int f){if(tot==cap-1){node.resize(cap+1000);cap+=1000;}node[++tot]=(dot){0,0,v,1,1,f};return tot;}
13 int cmp(int x,int v){return v==node[x].v?-1:v<node[x].v?0:1;}
14 int get_min(int x){while(lc(x)){x=lc(x);}return x;}
15 int get_max(int x){while(rc(x)){x=rc(x);}return x;}
16 int search(int x,int v)
17 {
18 if(!x){return 0;}
19 int d=cmp(x,v);
20 if(d==-1){return x;}
21 return search(node[x].ch[d],v);
22 }
23 void rotate(int x,int d)
24 {
25 int k=fa(x);
26 node[k].ch[d^1]=node[x].ch[d];if(node[x].ch[d]){fa(node[x].ch[d])=k;}
27 fa(x)=fa(k);if(fa(k)){int d2=cmp(fa(k),node[k].v);node[fa(k)].ch[d2]=x;}
28 fa(k)=x;node[x].ch[d]=k;maintain(k);
29 }
30 void splay(int x)
31 {
32 int y,p,d,d2;
33 while(fa(x))
34 {
35 y=fa(x);p=fa(y);d=cmp(y,node[x].v);
36 if(!p){rotate(x,d^1);break;}
37 d2=cmp(p,node[y].v);
38 if(d^d2){rotate(x,d^1);rotate(x,d2^1);}
39 else{rotate(y,d2^1);rotate(x,d^1);}
40 }
41 root=x;maintain(x);
42 }
43 int find(int x,int v)
44 {
45 int p=search(x,v);if(!p){return 0;}
46 splay(p);return p;
47 }
48 int insert(int x,int v,int f)
49 {
50 if(!x)
51 {
52 if(!s.empty()){x=s.top();s.pop();node[x]=(dot){0,0,v,1,1,f};}
53 else{x=new_node(v,f);}
54 return x;
55 }
56 int d=cmp(x,v);
57 if(d==-1){node[x].w++;return x;}
58 int p=insert(node[x].ch[d],v,x);maintain(x);
59 return p;
60 }
61 void add(int v){int p=insert(root,v,0);splay(p);}
62 int merge(int x,int y)
63 {
64 if(!x){return y;}if(!y){return x;}
65 int p=get_max(x);splay(p);
66 fa(y)=p;rc(p)=y;
67 maintain(p);return p;
68 }
69 void remove(int v)
70 {
71 int x=find(root,v);if(!x){return;}
72 if(node[x].w>1){node[x].w--;maintain(x);return;}
73 root=merge(lc(x),rc(x));fa(root)=0;
74 s.push(x);
75 }
76 int rnk(int x,int v)
77 {
78 int p=find(x,v);if(!p){return 0;}
79 return node[lc(p)].s+1;
80 }
81 int kth(int x,int k)
82 {
83 int s=node[lc(x)].s;int w=node[x].w;
84 if(s+1<=k&&k<=s+w){return node[x].v;}
85 else if(k<s+1){return kth(lc(x),k);}
86 else{return kth(rc(x),k-s-w);}
87 }
88 int pre(int x,int v,int ans)
89 {
90 if(!x){return ans;}
91 if(node[x].v<v){return pre(rc(x),v,node[x].v);}
92 else{return pre(lc(x),v,ans);}
93 }
94 int suc(int x,int v,int ans)
95 {
96 if(!x){return ans;}
97 if(node[x].v>v){return suc(lc(x),v,node[x].v);}
98 else{return suc(rc(x),v,ans);}
99 }
100 int main()
101 {
102 int i,j,flag,x;
103 cin>>n;node.resize(cap+1000);cap+=1000;
104 for(i=1;i<=n;i++)
105 {
106 scanf("%d%d",&flag,&x);
107 if(flag==1){add(x);}
108 else if(flag==2){remove(x);}
109 else if(flag==3){printf("%d\n",rnk(root,x));}
110 else if(flag==4){printf("%d\n",kth(root,x));}
111 else if(flag==5){printf("%d\n",pre(root,x,0));}
112 else{printf("%d\n",suc(root,x,0));}
113 }
114 return 0;
115 }
vector总结的更多相关文章
- c++ vector 使用
1. 包含一个头文件: 1 #include <vector> 2. 申明及初始化: std::vector<int> first; // empty vector of in ...
- Vector Tile
Mapbox Vector Tile Specification A specification for encoding tiled vector data. <?XML:NAMESPACE ...
- ArrayList、Vector、LinkedList的区别联系?
1.ArrayList.Vector.LinkedList类都是java.util包中,均为可伸缩数组. 2.ArrayList和Vector底层都是数组实现的,所以,索引数据快,删除.插入数据慢. ...
- ArrayList、Vector、HashMap、HashSet的默认初始容量、加载因子、扩容增量
当底层实现涉及到扩容时,容器或重新分配一段更大的连续内存(如果是离散分配则不需要重新分配,离散分配都是插入新元素时动态分配内存),要将容器原来的数据全部复制到新的内存上,这无疑使效率大大降低. 加载因 ...
- Java中Vector和ArrayList的区别
首先看这两类都实现List接口,而List接口一共有三个实现类,分别是ArrayList.Vector和LinkedList.List用于存放多个元素,能够维护元素的次序,并且允许元素的重复.3个具体 ...
- C++使用vector
#include <iostream> #include <string> #include <vector> using namespace std; void ...
- [LeetCode] Flatten 2D Vector 压平二维向量
Implement an iterator to flatten a 2d vector. For example,Given 2d vector = [ [1,2], [3], [4,5,6] ] ...
- C++ 数组array与vector的比较
转:http://blog.csdn.net/yukin_xue/article/details/7391897 1. array 定义的时候必须定义数组的元素个数;而vector 不需要: 且只能包 ...
- vector定义初始化
头文件 #include<vector> using std::vector; vector<T> v1; vector<T> v2(v1); vector< ...
- vector迭代器用法
#include<iostream> #include<vector> using namespace std; int main() { vector<int> ...
随机推荐
- CSS 奇技淫巧:动态高度过渡动画
这个问题源自于掘金上的一个留言,一个朋友问到,为什么我下面这段代码的高度过渡动画失效了? 伪代码大概是这样: { height: unset; transition: all 0.3s linear; ...
- Redis集群搭建与简单使用【转】
Redis集群搭建与简单使用 安装环境与版本 用两台虚拟机模拟6个节点,一台机器3个节点,创建出3 master.3 salve 环境. redis 采用 redis-3.2.4 版本. 两台虚拟机都 ...
- 图像质量评估论文 | Deep-IQA | IEEETIP2018
主题列表:juejin, github, smartblue, cyanosis, channing-cyan, fancy, hydrogen, condensed-night-purple, gr ...
- UnityToLaya小插件-找出空格并替换
unity导出的文件中经常会出现带有空格的节点或者文件夹 而这些空格在本地开发测试过程中不会出现,当这些带有空格路径的文件需要放到网络上时,就出现问题了 所以这里写了一个简单的查找并清理空格的插件, ...
- 《计算机组成原理 》& 《计算机网络》& 《数据库》 Roadmap for self-taugh student
计算机组成原理: UCB的这门课绝对是不错的资源. Great Ideas in Computer Architecture (Machine Structures) B站:https://www.b ...
- JDBC入门程序总结
JDBC本质 只是一个接口 每个数据库的规范 就是实现类的接口 其实是官方 定义的一套操作所有关系型数据库的规则,就是接口,各个数据库厂商去实现这套接口,提供数据库驱动jar包, 我们可以使用这套接口 ...
- LR参数
一.LR函数 : lr_start_transaction: 为性能分析标记事务的开始 lr_end_transaction: 为性能分析标记事务的结束:事务名称与事务开始时保持一致 lr_ren ...
- C语言补码(C语言学习笔记)
记录 在学习C语言数据范围时了解到了补码的概念,记录一下什么是补码,补码怎么运算的 运算 原文链接:https://www.cnblogs.com/lsgsanxiao/p/5113305.html ...
- ctfshow—web—web6
打开靶机 发现登录窗,首先想到SQL注入 抓包,进行SQL注入测试 测试发现空格符被过滤了 使用/**/代替空格符进行绕过,绕过后登录成功 检测回显位 开始查询数据库名 开始查询数据库内数据表名称 查 ...
- Eclipse中的可视化图形界面设计插件windowbuilder
对于eclipse平台上的可视化开发工具插件,有windowbuilder.visual editor等,今天就对windowbuilder说明: WindowBuilder功能特性等介绍,参考如下网 ...