HDU6321 Dynamic Graph Matching【状压DP 子集枚举】
HDU6321 Dynamic Graph Matching
题意:
给出\(N\)个点,一开始没有边,然后有\(M\)次操作,每次操作加一条无向边或者删一条已经存在的边,问每次操作后图中恰好匹配\(k\)对边的方案数有多少种<k = 1, 2, 3, \cdots ,\frac{n}{2}\(
\)N\le 10, M\le 30000$
题解:
看到\(N\)的数据范围很容易想到状压DP,不可能对每次操作单独来计算,所以考虑计算每次操作后对答案的贡献,记\(f[msk][k]\)为点集为\(msk\)的状态下匹配了\(k\)对点的方案数,可以发现,如果加入边\(u,v\),那么对总的匹配\(kk\)对点的答案的贡献为\(f[msk^(1<<u)^(1<<v)][kk-1]\),即固定选这条边的情况下的方案数,如果删边的话就减去贡献即可。
加入边之后还要修改\(f\)数组,而影响到的\(f\)数组的\(msk\)中肯定包含了\(u,v\)这两个点,所以我们需要枚举包含\(u,v\)两个点的集合\(msk\),然后将\(f[msk][i]\)减去\(f[msk^(1<<u)^(1<<v)][i-1]\)即可
注意初始化的时候\(f[msk][0]\)都是\(1\)
view code
//#pragma GCC optimize("O3")
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<bits/stdc++.h>
using namespace std;
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
const int MAXN = 10;
typedef long long int LL;
const LL MOD = 1E9+7;
int n, m, ret[6];
int f[1<<MAXN][6];
void solve(){
static char op[10];
scanf("%d %d",&n,&m);
memset(ret,0,24);
for(int msk = 0; msk < (1<<n); msk++) for(int i = 0; i <= n / 2; i++) f[msk][i] = !i;
while(m--){
int u, v;
scanf("%s %d %d",op,&u,&v);
u--, v--;
for(int i = 1; i <= n / 2; i++){
ret[i] = (ret[i] + (op[0]=='+'?1:-1) * f[((1<<n)-1)^(1<<u)^(1<<v)][i-1]) % MOD;
printf("%d%c",ret[i] = (ret[i] + MOD) % MOD," \n"[i==n/2]);
}
int msk = ((1<<n)-1) ^ (1<<u) ^ (1<<v);
int sub = msk;
while(true){
int mask = ((1<<n)-1) ^ sub;
for(int i = 1; i <= 5; i++) f[mask][i] = (f[mask][i] + (op[0]=='+'?1:-1) * f[mask^(1<<u)^(1<<v)][i-1]) % MOD;
if(!sub) break;
sub = ((sub-1) & msk);
}
}
}
int main(){
int tt;
for(scanf("%d",&tt); tt; tt--) solve();
return 0;
}
HDU6321 Dynamic Graph Matching【状压DP 子集枚举】的更多相关文章
- HDU - 6321 Problem C. Dynamic Graph Matching (状压dp)
题意:给定一个N个点的零图,M次操作,添加或删除一条边,每一次操作以后,打印用1,2,...N/2条边构成的匹配数. 分析:因为N的范围很小,所以可以把点的枚举状态用二进制表示集合.用一维数组dp[S ...
- [HDU6321]Dynamic Graph Matching(DP)
题意:给定一个n个点的无向图,开始没有边,然后m个操作,每次加边或者删边,每次操作后输出正好k个边的匹配数k=1,2,3,...n/2,n<=10,m<=30000 可以发现,n<= ...
- UOJ #348 州区划分 —— 状压DP+子集卷积
题目:http://uoj.ac/problem/348 一开始可以 3^n 子集DP,枚举一种状态的最后一个集合是什么来转移: 设 \( f[s] \) 表示 \( s \) 集合内的点都划分好了, ...
- codeforces1209E2 状压dp,枚举子集
题意 给一个n行m列的矩阵,每一列可以循环移位,问经过任意次移位后每一行的最大值总和最大为多少. 分析 每一行的最大值之和最大,可以理解为每一行任意选择一个数使它们的和最大. 设\(dp[i][S]\ ...
- HDU6321 Dynamic Graph Matching (杭电多校3C)
给出一些点集,然后对于每一次要求给出的这些点集里的1,2,3,4,5,6....n/2的匹配数, dp[i][j] 表示到第i次操作里点集为j的匹配数,然后我每次加入一条边u-v,我的状态就是 dp[ ...
- 【POJ 2411】【Mondriaans Dream】 状压dp+dfs枚举状态
题意: 给你一个高为h,宽为w的矩阵,你需要用1*2或者2*1的矩阵填充它 问你能有多少种填充方式 题解: 如果一个1*2的矩形横着放,那么两个位置都用二进制1来表示,如果是竖着放,那么会对下一层造成 ...
- HDU 6321 Dynamic Graph Matching
HDU 6321 Dynamic Graph Matching (状压DP) Problem C. Dynamic Graph Matching Time Limit: 8000/4000 MS (J ...
- 【NOIP2017】宝藏 题解(状压DP)
题目描述 参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 nnn 个深埋在地下的宝藏屋, 也给出了这 nnn 个宝藏屋之间可供开发的m mm 条道路和它们的长度. 小明决心亲自前往挖掘所有宝藏屋中 ...
- [Poj2411]Mondriaan's Dream(状压dp)(插头dp)
Mondriaan's Dream Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 18096 Accepted: 103 ...
随机推荐
- Tomcat7,Tomcat8 的manager 配置
1.打开文件:tomcat目录-->conf-->tomcat-users.xml 2.将以下代码替换原来的所有内容,不要犹豫,就是所有内容. <?xml version=&quo ...
- 【SpringBoot1.x】SpringBoot1.x Web 开发
SpringBoot1.x Web 开发 文章源码 简介 SpringBoot 非常适合 Web 应用程序开发.可以使用嵌入式 Tomcat,Jetty 或 Undertow 轻松创建独立的 HTTP ...
- 剑指offer之重建二叉树
1.问题描述:输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树.假设输入的前序遍历和中序遍历的结果中都不含重复的数字. 例如输入前序遍历序列pre {1,2,4,7,3,5,6, ...
- 前端面试:Http协议与浏览器
Http与Https的区别 Http是明文传输的,Https协议是在Http协议上添加了SSL的加密协议,可以进行加密传输和身份验证. 其实就是说Http对网络传输完全是裸奔状态,也就没办法防范中间人 ...
- Tengine 四层代理:
Tengine 四层代理: 1 ) 安装tengine ( nginx1.9 以上版本 编译以后要支持stream 模块) 1.1 ) tengine(nginx) 一定要是nginx-1.9.X 以 ...
- 【Docker】Docker概述、理解docker的集装箱、标准化、隔离的思想、 docker出现解决了什么问题
整理一下 慕课网 第一个docker化的java应用 Docker环境下的前后端分离项目部署与运维 课程时所做的笔记 Docker概述 docker - https://www.docker.com/ ...
- mysql .sock丢时候如何链接数据库
在mysql服务器本机上链接mysql数据库时,经常会噢出现mysql.sock不存在,导致无法链接的问题,这是因为如果指定localhost作为一个主机名,则mysqladmin默认使用unix套接 ...
- spring mvc + mybaties + mysql 完美整合cxf 实现webservice接口 (服务端、客户端)
spring-3.1.2.cxf-3.1.3.mybaties.mysql 整合实现webservice需要的完整jar文件 地址:http://download.csdn.net/detail/xu ...
- Canal:同步mysql增量数据工具,一篇详解核心知识点
老刘是一名即将找工作的研二学生,写博客一方面是总结大数据开发的知识点,一方面是希望能够帮助伙伴让自学从此不求人.由于老刘是自学大数据开发,博客中肯定会存在一些不足,还希望大家能够批评指正,让我们一起进 ...
- CF625E Frog Fights
有\(n\)只青蛙在一个长度为\(m\)的环上打架:每只青蛙有一个初始位置\(p_i\),和一个跳跃数值\(a_i\).从\(1\)号青蛙开始按序号循环行动,每次若第\(i\)只青蛙行动,则它会向前跳 ...