HDU-6881 Tree Cutting

题意

\(n\) 个点的一棵树,要求删除尽量少的点,使得删点之后还是一棵树,并且直径不超过 \(k\),求删除点的数量

分析

补题之前的一些错误想法:

  1. 尝试将某条直径拎出来,然后贪心的找可以保留下来的点的最大个数(没办法保证删点之后的直径还在拎出来的那条路径上,另外如果在该路径上面尺取大概也不可做)
  2. 树的所有直径必然交于一点(当直径为奇数时可以是边上的一点)。问题转换为对于每个点求树上与其距离 \(\lfloor {k\over 2} \rfloor\) 的点的个数。尝试树上DP,或者差分乱搞,只能计算出每个点子树上的,并不完整,有想过点分治,但是没有想清楚要如何处理。

开始讲正解:

考虑点分治,假设当前处理的根是 \(rt\),那么很容易算出根的答案,如何计算子树内的?假设 \(rt\) 有一颗子树 \(u\) ,在计算 \(u\) 中的点 \(x\) 的答案时,不需要考虑 \(u\) 中除 \(x\) 外的其他点对它的贡献,这一部分会继续分治下去求解。现在只需要计算 \(rt\) 除去 \(u\) 的点对 \(x\) 的贡献即可。

由于树边没有权值,我们可以用深度 \(dep\) 来表示树上路径距离,在求 \(x\) 的答案时,假设直径为 \(k\) (先假设\(k\)是偶数), 那么也就是求除去 \(u\) 这颗子树,其他深度大于 \((k/2) - dep[x]\) 的点的个数。可以先预处理出来 \(rt\) 的深度数组,然后求解 \(u\) 时,在预处理出来一个深度数组 \(c\),两者做差即可。

设子树 \(u\) 旁边的子树 \(v\) 上的一点 \(y\) , 那么当 \(dep[y] + dep[x] > k/2\), 才需要累计 \(y\) 对 \(x\)的贡献

当 \(k\) 为奇数时,树的直径中点在边上,我们考虑 \(x\) 到 \(anc[x]\) 这条边,答案应该是深度大于 \((k-1)/2-dep[u]+1\)的点的个数。但是如果 \(anc[x]\) 是 \(rt\),要注意还要累计\(x\) 所在子树 \(u\) 上的贡献。因为该边并不会递归下去分治求解。

const int N = 300000 + 5;
typedef pair<int,int> pii;
vector<pii> g[N];
int n, k;
int anc[N], sz[N], dep[N], allcount[N], o[N];
int cnt_node[N], cnt_edge[N];
bool del[N];
int rt, min_size, all, max_dep, node_len, edge_len;
void getsz(int x, int fa) {
anc[x] = fa;
sz[x] = 1;
int maxpart = 0;
for(auto t : g[x]) {
if(t.first == fa || del[t.first]) continue;
getsz(t.first, x);
sz[x] += sz[t.first];
maxpart = max(maxpart, sz[t.first]);
}
maxpart = max(maxpart, all - sz[x]);
if(maxpart < min_size) {
min_size = maxpart; rt = x;
}
}
// 获得点分治当前处理树的dep数组,与后缀和 allcount
void travel(int u) {
static int o[N];// BFS队列
int l = 0, r = -1;
o[++r] = u;
while(l <= r) {
int u = o[l++];
allcount[dep[u]] ++;
max_dep = max(max_dep, dep[u]);
for(auto &v : g[u]){
if(v.first == anc[u] || del[v.first]) continue;
anc[v.first] = u;
dep[v.first] = dep[u] + 1;
o[++r] = v.first;
}
}
for(int i=max_dep-1;i>=0;i--) allcount[i] += allcount[i+1];
}
void travel2(int u) {
static int c[N], o[N];
int l = 0, r = -1;
o[++r] = u;
while(l <= r) {
int u = o[l++];
c[dep[u]] ++;
for(auto &v:g[u]) {
if(del[v.first] || v.first == anc[u]) continue;
o[++r] = v.first;
}
}
int Max = dep[o[r]];
for(int i=Max - 1; i >= 0; i--) c[i] += c[i+1];
for(int i=0;i<=r;i++){
int u = o[i];
int d = max(0, node_len - dep[u] + 1);
cnt_node[u] += allcount[d] - c[d];
// 下面是处理树直径中心在边上的情况
d = max(0, edge_len - dep[u] + 2);
for(auto &v:g[u]) {
if(v.first != anc[u]) continue;
cnt_edge[v.second] += allcount[d] - c[d];
if(anc[u] == rt) { // 如果是与rt相连的边,要统计 c 的答案
cnt_edge[v.second] += c[edge_len + 2];
}
}
}
// 最后要记得清空
for(int i=0;i<=Max;i++) c[i] = 0;
}
void get(int u) {
del[u] = 1;
dep[u] = 0;
max_dep = 0;
travel(rt);
cnt_node[u] += allcount[node_len + 1];
for(auto &v : g[u]) {
if(del[v.first]) continue;
travel2(v.first);
}
_rep(i,0,max_dep) allcount[i] = 0;
for(auto &v : g[u]) {
if(del[v.first]) continue;
all = sz[v.first]; min_size = all;
getsz(v.first, 0);
getsz(rt, 0);
get(rt);
}
} int main(){
int T; scanf("%d", &T);
while(T--){
scanf("%d%d", &n, &k);
node_len = k / 2;
edge_len = (k - 1) / 2; _rep(i, 1, n) {
g[i].clear();
cnt_edge[i] = cnt_node[i] = del[i] = 0;
}
_rep(i, 1, n-1) {
int u, v; scanf("%d%d", &u,&v);
g[u].push_back(pii(v, i));
g[v].push_back(pii(u, i));
}
all = n; min_size = n;
getsz(1, 0);
getsz(rt, 0);
get(rt);
int res = n;
_rep(i, 1, n) res = min(res, cnt_node[i]);
_rep(i, 1, n-1) res = min(res, cnt_edge[i]);
printf("%d\n", res);
}
return 0;
}

HDU-6881 Tree Cutting (HDU多校D10T5 点分治)的更多相关文章

  1. hdu 5909 Tree Cutting [树形DP fwt]

    hdu 5909 Tree Cutting 题意:一颗无根树,每个点有权值,连通子树的权值为异或和,求异或和为[0,m)的方案数 \(f[i][j]\)表示子树i中经过i的连通子树异或和为j的方案数 ...

  2. 【HDU 5909】 Tree Cutting (树形依赖型DP+点分治)

    Tree Cutting Problem Description Byteasar has a tree T with n vertices conveniently labeled with 1,2 ...

  3. HDU 5909 Tree Cutting 动态规划 快速沃尔什变换

    Tree Cutting 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5909 Description Byteasar has a tree T ...

  4. hdu 5909 Tree Cutting——点分治(树形DP转为序列DP)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5909 点分治的话,每次要做一次树形DP:但时间应该是 siz*m2 的.可以用 FWT 变成 siz*ml ...

  5. HDU 5909 Tree Cutting(FWT+树形DP)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5909 [题目大意] 给出一棵树,其每棵连通子树的价值为其点权的xor和, 问有多少连通子树的价值为 ...

  6. hdu 5909 Tree Cutting —— 点分治

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5909 点分治,每次的 rt 是必选的点: 考虑必须选根的一个连通块,可以DP,决策就是在每个子树中决定选不 ...

  7. HDU 5909 Tree Cutting

    传送门 题意: 有一棵n个点的无根树,节点依次编号为1到n,其中节点i的权值为vi, 定义一棵树的价值为它所有点的权值的异或和. 现在对于每个[0,m)的整数k,请统计有多少T的非空连通子树的价值等于 ...

  8. HDU.5909.Tree Cutting(树形DP FWT/点分治)

    题目链接 \(Description\) 给定一棵树,每个点有权值,在\([0,m-1]\)之间.求异或和为\(0,1,...,m-1\)的非空连通块各有多少个. \(n\leq 1000,m\leq ...

  9. HDU - 5909 Tree Cutting (树形dp+FWT优化)

    题意:树上每个节点有权值,定义一棵树的权值为所有节点权值异或的值.求一棵树中,连通子树值为[0,m)的个数. 分析: 设\(dp[i][j]\)为根为i,值为j的子树的个数. 则\(dp[i][j\o ...

随机推荐

  1. Kubernetes K8S之CPU和内存资源限制详解

    Kubernetes K8S之CPU和内存资源限制详解 Pod资源限制 备注:CPU单位换算:100m CPU,100 milliCPU 和 0.1 CPU 都相同:精度不能超过 1m.1000m C ...

  2. Token验证的流程及如何准确的判断一个数据的类型

    Token验证的流程: 1,客户端使用用户名跟密码请求登录:2,服务端收到请求,去验证用户名与密码:3,验证成功后,服务端会签发一个 Token,再把这个 Token 发送给客户端:4,客户端收到 T ...

  3. 【Flutter】容器类组件之填充

    前言 Padding可以给其子节点添加填充(留白). 接口描述 class EdgeInsets extends EdgeInsetsGeometry { // 分别指定四个方向的填充 const E ...

  4. 避免用using包装DbContext【翻译】

    EF和EF Core 的DbContext类实现IDisposable接口.因此,很多最佳编程实践中都建议你将它们放在一个using()块中.不幸的是,至少在Web应用程序中,这样做通常不是一个好主意 ...

  5. 微信登录4-开发回调URL

    一.准备 1.引入pom依赖 在要使用HttpClient的项目中加入依赖 <!--httpclient--> <dependency> <groupId>org. ...

  6. scrapy的大文件下载(基于一种形式的管道类实现)

    scrapy的大文件下载(基于一种形式的管道类实现) 爬虫类中将解析到的图片地址存储到item,将item提交给指定的管道 在管道文件中导包:from scrapy.pipelines.images ...

  7. pycharm2021永久激活

    Pycharm破解版地址: 链接: https://pan.baidu.com/s/1dEkzKRFMaeNjWF4h7y2TdQ 提取码: eqr3  Anaconda地址:版本是python3.6 ...

  8. python(paramiko模块的简单使用)

    #通过paramiko模块连接主机运行bash命令 import paramiko hostname = '192.168.88.31' port = 22 username = 'root' pas ...

  9. Python+Selenium+Unittest实现PO模式web自动化框架(1)

    1.什么是PO模式? PO是Page Object的缩写 PO模式是自动化测试项目开发实践的最佳设计模式之一,讲页面定位和业务操作分开,也就是把对象的定位和测试脚本分开,从而提供可维护性. 主要有以下 ...

  10. 【WPF】将DataGrid内容导出到Excel

    引言 在做项目时要求将datagrid的内容导出到Excel,以前做winform项目时遇到过,就把代码搬过来用,但wpf和winform还是有些不同,就修改了一些东西,使其能实现这个功能. 本文是导 ...