题解 洛谷 P4632 【[APIO2018] New Home 新家】
首先考虑可以用二分答案来解决询问,可以二分一个长度\(len\),若在区间\([x-len,x+len]\)内包含了所有\(k\)种的商店,那么这个\(len\)就是合法的,可以通过二分来求其最小值。
对每个商店的存在时间转化为在\(a\)时刻出现,在\(b+1\)时刻消失,然后和询问一起离线按时间排序,就可以解决时间这一维的限制了。
然后考虑如何快速查询区间内是否包含所有的商店,和支持维护商店的出现消失。
对于这种区间数颜色的问题,可以对每个位置记录与其商店类型相同的上一个位置\(pre\),发现一个位置上可能会有多个商店,那么这里的\(pre\)改为记录这些商店的到其各自商店类型相同的上一个位置的最小值。
\(pre\)是记录该位置商店类型相同的上一个位置,所以对于区间\([l,r]\),如果从\(r+1\)往后的所有位置的\(pre\)的最小值小于\(l\),那么说明至少有一种商店没在该区间出现。但是\(r+1\)往后可能并不会包含所有\(k\)种商店,因此加入哨兵商店来避免讨论,分别在最前面和最后面加入每种商店各一个。
然后就是如何支持维护\(pre\),对于每个位置开一个\(multiset\)维护该位置所有商店的对应其商店类型的前驱,\(multiset\)中的最小值即为该位置的\(pre\),然后用线段树动态开点来维护区间\(pre\)的最小值,这里其实就是在线段树的每个叶子节点开了一个\(multiset\)来维护信息。
对于商店的出现消失维护,对每种商店类型开一个\(multiset\),维护该类型所有商店的出现位置,然后出现和消失只用解决对于该位置同类型的前驱和后继的影响就行,线段树单点修改即可实现。
若用线段树查询最小值来判定二分,复杂度是\(O(n\ log^2\ n)\)的,可以直接在线段树上二分位置,复杂度就是\(O(n\ log\ n)\)的了。
细节挺多,具体实现就看代码吧。
\(code:\)
#include<bits/stdc++.h>
#define maxn 900010
#define all 200000000
#define mid ((l+r)>>1)
using namespace std;
typedef multiset<int>::iterator muli;
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
int n,k,q,tot,root,tree_cnt,num;
int mi[maxn*20],ls[maxn*20],rs[maxn*20],ans[maxn];
multiset<int> p[maxn],s[maxn*20];
struct node
{
int pos,tim,id,opt;
}t[maxn];
bool cmp(const node &a,const node &b)
{
if(a.tim==b.tim) return a.opt<b.opt;
return a.tim<b.tim;
}
void modify(int l,int r,int pos,int v,int type,int &cur)
{
if(!cur) cur=++tree_cnt;
if(l==r)
{
if(type) s[cur].insert(v);
else s[cur].erase(s[cur].find(v));
if(!s[cur].empty()) mi[cur]=*s[cur].begin();
else mi[cur]=all;
return;
}
if(pos<=mid) modify(l,mid,pos,v,type,ls[cur]);
else modify(mid+1,r,pos,v,type,rs[cur]);
mi[cur]=min(mi[ls[cur]],mi[rs[cur]]);
}
int query(int pos)
{
if(num<k) return -1;
int l=1,r=all,cur=root,midmi,rmi=all;
while(l<r)
{
midmi=min(rmi,mi[rs[cur]]);
if(pos>mid||midmi<2*pos-mid) cur=rs[cur],l=mid+1;
else rmi=midmi,cur=ls[cur],r=mid;
}
return l-pos;
}
int main()
{
read(n),read(k),read(q),mi[0]=all;
for(int i=1;i<=k;++i)
{
p[i].insert(-all),p[i].insert(all);
modify(1,all,all,-all,1,root);
}
for(int i=1;i<=n;++i)
{
int x,id,a,b;
read(x),read(id),read(a),read(b);
t[++tot]=(node){x,a,id,1};
t[++tot]=(node){x,b+1,id,0};
}
for(int i=1;i<=q;++i)
{
int pos,tim;
read(pos),read(tim);
t[++tot]=(node){pos,tim,i,2};
}
sort(t+1,t+tot+1,cmp);
for(int i=1;i<=tot;++i)
{
int opt=t[i].opt,id=t[i].id,pos=t[i].pos;
muli a,b;
if(opt==0)
{
a=b=p[id].lower_bound(pos),a--,b++;
modify(1,all,*b,pos,0,root);
modify(1,all,*b,*a,1,root);
modify(1,all,pos,*a,0,root);
if(p[id].size()==3) num--;
p[id].erase(p[id].find(pos));
}
if(opt==1)
{
a=b=p[id].lower_bound(pos),a--;
modify(1,all,*b,pos,1,root);
modify(1,all,*b,*a,0,root);
modify(1,all,pos,*a,1,root);
if(p[id].size()==2) num++;
p[id].insert(pos);
}
if(opt==2) ans[id]=query(pos);
}
for(int i=1;i<=q;++i) printf("%d\n",ans[i]);
return 0;
}
题解 洛谷 P4632 【[APIO2018] New Home 新家】的更多相关文章
- 洛谷P4632 [APIO2018] New Home 新家(动态开节点线段树 二分答案 扫描线 set)
题意 题目链接 Sol 这题没有想象中的那么难,但也绝对不简单. 首先把所有的询问离线,按照出现的顺序.维护时间轴来处理每个询问 对于每个询问\((x_i, y_i)\),可以二分答案\(mid\). ...
- 洛谷 P3258 [JLOI2014]松鼠的新家 题解
P3258 [JLOI2014]松鼠的新家 题目描述 松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的.天哪,他 ...
- 洛谷 P3258 [JLOI2014]松鼠的新家(树链剖分)
题目描述松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的.天哪,他居然真的住在”树“上. 松鼠想邀请小熊维尼前来 ...
- 洛谷P3258 [JLOI2014]松鼠的新家(树上差分+树剖)
题目描述 松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的.天哪,他居然真的住在”树“上. 松鼠想邀请小熊维尼前 ...
- 洛谷 P3258 [JLOI2014]松鼠的新家 解题报告
P3258 [JLOI2014]松鼠的新家 题目描述 松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的.天哪,他 ...
- 洛谷P3258 [JLOI2014]松鼠的新家
P3258 [JLOI2014]松鼠的新家 题目描述 松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到达,且俩个房间之间的路线都是唯一的.天哪,他 ...
- 洛谷——P3258 [JLOI2014]松鼠的新家
https://www.luogu.org/problem/show?pid=3258 题目描述 松鼠的新家是一棵树,前几天刚刚装修了新家,新家有n个房间,并且有n-1根树枝连接,每个房间都可以相互到 ...
- 洛谷 P3258 [JLOI2014]松鼠的新家 树链剖分+差分前缀和优化
目录 题面 题目链接 题目描述 输入输出格式 输入格式 输出格式 输入输出样例 输入样例: 输出样例: 说明 说明 思路 AC代码 优化 优化后AC代码 总结 题面 题目链接 P3258 [JLOI2 ...
- 题解——洛谷P4095 [HEOI2013]Eden 的新背包问题(背包)
思路很妙的背包 用了一些前缀和的思想 去掉了一个物品,我们可以从前i-1个和后i+1个推出答案 奇妙的思路 #include <cstdio> #include <algorithm ...
随机推荐
- Spring如何解决循环依赖?
介绍 先说一下什么是循环依赖,Spring在初始化A的时候需要注入B,而初始化B的时候需要注入A,在Spring启动后这2个Bean都要被初始化完成 Spring的循环依赖有两种场景 构造器的循环依赖 ...
- 《T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction》 论文解读
论文链接:https://arxiv.org/abs/1811.05320 最近发现博客好像会被CSDN和一些奇怪的野鸡网站爬下来?看见有人跟爬虫机器人单方面讨论问题我也蛮无奈的.总之原作者Misso ...
- FreeSql 使用 ToTreeList/AsTreeCte 查询无限级分类表
关于无限级分类 第一种方案: 使用递归算法,也是使用频率最多的,大部分开源程序也是这么处理,不过一般都只用到四级分类. 这种算法的数据库结构设计最为简单.category表中一个字段id,一个字段fi ...
- 编译ts时候src目录的ts分别生成了单独的js文件
{ "compilerOptions": { "target": "es5", "outDir": "bin- ...
- mpvue实战-手势滑动导航栏
写点东西记录一下美好时光,上周学习了一下通过mpuve开发微信小程序,看完文档,就准备撸起袖子加油干的时候,一开始就被支持手势滑动的导航栏给搞懵逼了.求助一波百度和谷歌未果后,只能自己动脑动手!为了给 ...
- 浅谈tkinter模块
目录 tkinter模块 tkinter模块简单使用 主窗口 Button按钮 Label标签 Text编辑框 Entry输入框 ListBox列表 RadioButton单选框 CheckButto ...
- Springboot 2.X的RequestMapping 的映射路径怎么看不到了?
在使用spring boot 1.X的时候我们可以在console中看到mapping的映射路径 2020-01-12 19:10:19.996 INFO 2711 --- [ main] s.w.s ...
- Python3笔记013 - 3.4 循环语句
第3章 流程控制语句 3.4 循环语句 1.while 循环 # 带else的while循环,循环结束后执行,根据需要取舍else while 条件表达式: 循环体 else: 语句 a = 0 wh ...
- 「区间DP」「洛谷P3205」「 [HNOI2010]」合唱队
洛谷P3205 [HNOI2010]合唱队 题目: 题目描述 为了在即将到来的晚会上有更好的演出效果,作为 A 合唱队负责人的小 A 需要将合唱队的人根据他们的身高排出一个队形.假定合唱队一共 n 个 ...
- 用Kubernetes部署Springboot或Nginx,也就一个文件的事
1 前言 经过<Maven一键部署Springboot到Docker仓库,为自动化做准备>,Springboot的Docker镜像已经准备好,也能在Docker上成功运行了,是时候放上Ku ...