简单记录 - bobo老师的玩转算法系列–玩转算法 - 二分搜索树

二叉搜索树 Binary Search Tree

查找问题 Searching Problem

查找问题是计算机中非常重要的基础问题

二分查找法 Binary Search

v

<v v >v

对于有序数列,才能使用二分查找法 (排序的作用)

二分查找法的思想在1946年提出。

第一个没有bug的二分查找法在1962年才出现。

操作:实现二分查找法

非递归的二分查找算法 BinarySearch.java

package algo;

// 非递归的二分查找算法
public class BinarySearch { // 我们的算法类不允许产生任何实例
private BinarySearch() {} // 二分查找法,在有序数组arr中,查找target
// 如果找到target,返回相应的索引index
// 如果没有找到target,返回-1
public static int find(Comparable[] arr, Comparable target) { // 在arr[l...r]之中查找target
int l = 0, r = arr.length-1;
while( l <= r ){ //int mid = (l + r)/2;
// 防止极端情况下的整形溢出,使用下面的逻辑求出mid
int mid = l + (r-l)/2; if( arr[mid].compareTo(target) == 0 )
return mid; if( arr[mid].compareTo(target) > 0 )
r = mid - 1;
else
l = mid + 1;
} return -1;
} // 测试非递归的二分查找算法
public static void main(String[] args) { int N = 1000000;
Integer[] arr = new Integer[N];
for(int i = 0 ; i < N ; i ++)
arr[i] = new Integer(i); // 对于我们的待查找数组[0...N)
// 对[0...N)区间的数值使用二分查找,最终结果应该就是数字本身
// 对[N...2*N)区间的数值使用二分查找,因为这些数字不在arr中,结果为-1
for(int i = 0 ; i < 2*N ; i ++) {
int v = BinarySearch.find(arr, new Integer(i));
if (i < N)
assert v == i;
else
assert v == -1;
} return;
}
}

使用递归地方式实现二分查找法

递归实现通常思维起来更容易。

递归在性能上会略差。

练习:实现二分查找法的递归实现

package algo;

// 递归的二分查找算法
public class BinarySearch2 { // 我们的算法类不允许产生任何实例
private BinarySearch2() {} private static int find(Comparable[] arr, int l, int r, Comparable target){ if( l > r )
return -1; //int mid = (l+r)/2;
// 防止极端情况下的整形溢出,使用下面的逻辑求出mid
int mid = l + (r-l)/2; if( arr[mid].compareTo(target) == 0 )
return mid;
else if( arr[mid].compareTo(target) > 0 )
return find(arr, l, mid-1, target);
else
return find(arr, mid+1, r, target);
} // 二分查找法,在有序数组arr中,查找target
// 如果找到target,返回相应的索引index
// 如果没有找到target,返回-1
public static int find(Comparable[] arr, Comparable target) { return find(arr, 0, arr.length-1, target);
} // 测试递归的二分查找算法
public static void main(String[] args) { int N = 1000000;
Integer[] arr = new Integer[N];
for(int i = 0 ; i < N ; i ++)
arr[i] = new Integer(i); // 对于我们的待查找数组[0...N)
// 对[0...N)区间的数值使用二分查找,最终结果应该就是数字本身
// 对[N...2*N)区间的数值使用二分查找,因为这些数字不在arr中,结果为-1
for(int i = 0 ; i < 2*N ; i ++) {
int v = BinarySearch2.find(arr, new Integer(i));
if (i < N)
assert v == i;
else
assert v == -1;
} return;
}
}

比较

Main

package algo;

import algo.BinarySearch;
import algo.BinarySearch2; // 比较非递归和递归写法的二分查找的效率
// 非递归算法在性能上有微弱优势
public class Main { private Main(){} public static void main(String[] args) { int N = 1000000;
Integer[] arr = new Integer[N];
for(int i = 0 ; i < N ; i ++)
arr[i] = new Integer(i); // 测试非递归二分查找法
long startTime = System.currentTimeMillis(); // 对于我们的待查找数组[0...N)
// 对[0...N)区间的数值使用二分查找,最终结果应该就是数字本身
// 对[N...2*N)区间的数值使用二分查找,因为这些数字不在arr中,结果为-1
for(int i = 0 ; i < 2*N ; i ++) {
int v = BinarySearch.find(arr, new Integer(i));
if (i < N)
assert v == i;
else
assert v == -1;
}
long endTime = System.currentTimeMillis(); System.out.println("Binary Search (Without Recursion): " + (endTime - startTime) + "ms"); // 测试递归的二分查找法
startTime = System.currentTimeMillis(); // 对于我们的待查找数组[0...N)
// 对[0...N)区间的数值使用二分查找,最终结果应该就是数字本身
// 对[N...2*N)区间的数值使用二分查找,因为这些数字不在arr中,结果为-1
for(int i = 0 ; i < 2*N ; i ++) {
int v = BinarySearch2.find(arr, new Integer(i));
if (i < N)
assert v == i;
else
assert v == -1;
}
endTime = System.currentTimeMillis();
System.out.println("Binary Search (With Recursion): " + (endTime - startTime) + "ms"); }
}
D:\Environments\jdk-11.0.2\bin\java.exe -javaagent:D:\Java\ideaIU-2019.2.win\lib\idea_rt.jar=9455:D:\Java\ideaIU-2019.2.win\bin -Dfile.encoding=UTF-8 -classpath D:\IdeaProjects\imooc\Learning-Algorithms\05-Binary-Search-Tree\out\production\01-Binary-Search algo.Main
Binary Search (Without Recursion): 337ms
Binary Search (With Recursion): 514ms Process finished with exit code 0

比较非递归和递归写法的二分查找的效率

非递归算法在性能上有微弱优势

【二分搜索树】1、二分查找法的实现 - Binary Search的更多相关文章

  1. [Swift]LeetCode272. 最近的二分搜索树的值 II $ Closest Binary Search Tree Value II

    Given a non-empty binary search tree and a target value, find k values in the BST that are closest t ...

  2. 二分查找(Binary Search)

    二分查找(Binary Search): int BinarySearch(int *array, int N, int key) { ; int left, right, mid; left = ; ...

  3. Leetcode之二分法专题-704. 二分查找(Binary Search)

    Leetcode之二分法专题-704. 二分查找(Binary Search) 给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target  ,写一个函数搜索 nums 中的 t ...

  4. 二分查找(Binary Search)的递归和非递归

    Binary Search 有时候我们也把它叫做二进制查找 是一种较为高效的再数组中查找目标元素的方法 我们可以通过递归和非递归两种方式来实现它 //非递归 public static int bin ...

  5. LeetCode 108. 将有序数组转换为二叉搜索树(Convert Sorted Array to Binary Search Tree) 14

    108. 将有序数组转换为二叉搜索树 108. Convert Sorted Array to Binary Search Tree 题目描述 将一个按照升序排列的有序数组,转换为一棵高度平衡二叉搜索 ...

  6. 二分查找(Binary Search)的基本实现

    关于二分查找法二分查找法主要是解决在"一堆数中找出指定的数"这类问题. 而想要应用二分查找法,这"一堆数"必须有一下特征: 1,存储在数组中2,有序排列 所以如 ...

  7. 二分查找(binary search)java实现及时间复杂度

    概述 在一个已排序的数组seq中,使用二分查找v,假如这个数组的范围是[low...high],我们要的v就在这个范围里.查找的方法是拿low到high的正中间的值,我们假设是m,来跟v相比,如果m& ...

  8. [Swift]LeetCode108. 将有序数组转换为二叉搜索树 | Convert Sorted Array to Binary Search Tree

    Given an array where elements are sorted in ascending order, convert it to a height balanced BST. Fo ...

  9. [Swift]LeetCode109. 有序链表转换二叉搜索树 | Convert Sorted List to Binary Search Tree

    Given a singly linked list where elements are sorted in ascending order, convert it to a height bala ...

随机推荐

  1. 七牛云上传视频(后端获取tolen)

    参照网址 https://developer.qiniu.com/kodo/sdk/1242/python #pip install qiniufrom qiniu import Auth #需要填写 ...

  2. JavaSE20-线程&同步

    1.线程 1.1 基本概念 线程的概念 线程(Thread)是操作系统能够进行运算调度的最小单位.它被包含在进程之中,是进程中的实际运作单位.一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并 ...

  3. 3分钟快速搞懂Java的桥接方法

    什么是桥接方法? Java中的桥接方法(Bridge Method)是一种为了实现某些Java语言特性而由编译器自动生成的方法. 我们可以通过Method类的isBridge方法来判断一个方法是否是桥 ...

  4. 牛客练习赛 73 D

    题目链接 离别 离线算法+线段树 容易发现当我们枚举右端点r时,符合条件的左端点是一段连续的区间 我们可以用队列来维护这个连续区间的左右端点 当枚举到端点\(i\)时,将下标\(i\)插入到队列\(q ...

  5. vue第十二单元(vue中过渡效果的实现)

    第十二单元(vue中过渡效果的实现) #课程目标 熟练掌握transition组件的用法 熟练使用transition组件做过渡特效 熟练使用transition组件做动画特效 了解使用transit ...

  6. Spark内核-任务调度机制

    作者:十一喵先森 链接:https://juejin.im/post/5e1c414fe51d451cad4111d1 来源:掘金 著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. ...

  7. Liunx运维(三)-文件过滤及内容编辑处理

    文档目录: 一.cat:合并文件或查看文件内容 二.tac:反向显示文件内容 三.more:分页显示文件内容 四.less:分页显示文件内容 五.head:显示文件头部内容 六.tail:显示文件尾部 ...

  8. python简单爬去前程无忧信息招聘

    import sys reload(sys) sys.setdefaultencoding('utf-8') import requests import csv from BeautifulSoup ...

  9. Winform Dock顺序调整

    在布局的时候,当一个窗体内有多个控件使用了Dock属性来布局,Dock顺序的调整: 最近被.net winform中的控件布局搞困惑了,由于控件都是使用Dock方式的,操作起来也是比较方便,如果最大化 ...

  10. 机器学习 第4篇:数据预处理(sklearn 插补缺失值)

    由于各种原因,现实世界中的许多数据集都包含缺失值,通常把缺失值编码为空白,NaN或其他占位符.但是,此类数据集与scikit-learn估计器不兼容,这是因为scikit-learn的估计器假定数组中 ...