简单记录 - bobo老师的玩转算法系列–玩转算法 - 二分搜索树

二叉搜索树 Binary Search Tree

查找问题 Searching Problem

查找问题是计算机中非常重要的基础问题

二分查找法 Binary Search

v

<v v >v

对于有序数列,才能使用二分查找法 (排序的作用)

二分查找法的思想在1946年提出。

第一个没有bug的二分查找法在1962年才出现。

操作:实现二分查找法

非递归的二分查找算法 BinarySearch.java

package algo;

// 非递归的二分查找算法
public class BinarySearch { // 我们的算法类不允许产生任何实例
private BinarySearch() {} // 二分查找法,在有序数组arr中,查找target
// 如果找到target,返回相应的索引index
// 如果没有找到target,返回-1
public static int find(Comparable[] arr, Comparable target) { // 在arr[l...r]之中查找target
int l = 0, r = arr.length-1;
while( l <= r ){ //int mid = (l + r)/2;
// 防止极端情况下的整形溢出,使用下面的逻辑求出mid
int mid = l + (r-l)/2; if( arr[mid].compareTo(target) == 0 )
return mid; if( arr[mid].compareTo(target) > 0 )
r = mid - 1;
else
l = mid + 1;
} return -1;
} // 测试非递归的二分查找算法
public static void main(String[] args) { int N = 1000000;
Integer[] arr = new Integer[N];
for(int i = 0 ; i < N ; i ++)
arr[i] = new Integer(i); // 对于我们的待查找数组[0...N)
// 对[0...N)区间的数值使用二分查找,最终结果应该就是数字本身
// 对[N...2*N)区间的数值使用二分查找,因为这些数字不在arr中,结果为-1
for(int i = 0 ; i < 2*N ; i ++) {
int v = BinarySearch.find(arr, new Integer(i));
if (i < N)
assert v == i;
else
assert v == -1;
} return;
}
}

使用递归地方式实现二分查找法

递归实现通常思维起来更容易。

递归在性能上会略差。

练习:实现二分查找法的递归实现

package algo;

// 递归的二分查找算法
public class BinarySearch2 { // 我们的算法类不允许产生任何实例
private BinarySearch2() {} private static int find(Comparable[] arr, int l, int r, Comparable target){ if( l > r )
return -1; //int mid = (l+r)/2;
// 防止极端情况下的整形溢出,使用下面的逻辑求出mid
int mid = l + (r-l)/2; if( arr[mid].compareTo(target) == 0 )
return mid;
else if( arr[mid].compareTo(target) > 0 )
return find(arr, l, mid-1, target);
else
return find(arr, mid+1, r, target);
} // 二分查找法,在有序数组arr中,查找target
// 如果找到target,返回相应的索引index
// 如果没有找到target,返回-1
public static int find(Comparable[] arr, Comparable target) { return find(arr, 0, arr.length-1, target);
} // 测试递归的二分查找算法
public static void main(String[] args) { int N = 1000000;
Integer[] arr = new Integer[N];
for(int i = 0 ; i < N ; i ++)
arr[i] = new Integer(i); // 对于我们的待查找数组[0...N)
// 对[0...N)区间的数值使用二分查找,最终结果应该就是数字本身
// 对[N...2*N)区间的数值使用二分查找,因为这些数字不在arr中,结果为-1
for(int i = 0 ; i < 2*N ; i ++) {
int v = BinarySearch2.find(arr, new Integer(i));
if (i < N)
assert v == i;
else
assert v == -1;
} return;
}
}

比较

Main

package algo;

import algo.BinarySearch;
import algo.BinarySearch2; // 比较非递归和递归写法的二分查找的效率
// 非递归算法在性能上有微弱优势
public class Main { private Main(){} public static void main(String[] args) { int N = 1000000;
Integer[] arr = new Integer[N];
for(int i = 0 ; i < N ; i ++)
arr[i] = new Integer(i); // 测试非递归二分查找法
long startTime = System.currentTimeMillis(); // 对于我们的待查找数组[0...N)
// 对[0...N)区间的数值使用二分查找,最终结果应该就是数字本身
// 对[N...2*N)区间的数值使用二分查找,因为这些数字不在arr中,结果为-1
for(int i = 0 ; i < 2*N ; i ++) {
int v = BinarySearch.find(arr, new Integer(i));
if (i < N)
assert v == i;
else
assert v == -1;
}
long endTime = System.currentTimeMillis(); System.out.println("Binary Search (Without Recursion): " + (endTime - startTime) + "ms"); // 测试递归的二分查找法
startTime = System.currentTimeMillis(); // 对于我们的待查找数组[0...N)
// 对[0...N)区间的数值使用二分查找,最终结果应该就是数字本身
// 对[N...2*N)区间的数值使用二分查找,因为这些数字不在arr中,结果为-1
for(int i = 0 ; i < 2*N ; i ++) {
int v = BinarySearch2.find(arr, new Integer(i));
if (i < N)
assert v == i;
else
assert v == -1;
}
endTime = System.currentTimeMillis();
System.out.println("Binary Search (With Recursion): " + (endTime - startTime) + "ms"); }
}
D:\Environments\jdk-11.0.2\bin\java.exe -javaagent:D:\Java\ideaIU-2019.2.win\lib\idea_rt.jar=9455:D:\Java\ideaIU-2019.2.win\bin -Dfile.encoding=UTF-8 -classpath D:\IdeaProjects\imooc\Learning-Algorithms\05-Binary-Search-Tree\out\production\01-Binary-Search algo.Main
Binary Search (Without Recursion): 337ms
Binary Search (With Recursion): 514ms Process finished with exit code 0

比较非递归和递归写法的二分查找的效率

非递归算法在性能上有微弱优势

【二分搜索树】1、二分查找法的实现 - Binary Search的更多相关文章

  1. [Swift]LeetCode272. 最近的二分搜索树的值 II $ Closest Binary Search Tree Value II

    Given a non-empty binary search tree and a target value, find k values in the BST that are closest t ...

  2. 二分查找(Binary Search)

    二分查找(Binary Search): int BinarySearch(int *array, int N, int key) { ; int left, right, mid; left = ; ...

  3. Leetcode之二分法专题-704. 二分查找(Binary Search)

    Leetcode之二分法专题-704. 二分查找(Binary Search) 给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target  ,写一个函数搜索 nums 中的 t ...

  4. 二分查找(Binary Search)的递归和非递归

    Binary Search 有时候我们也把它叫做二进制查找 是一种较为高效的再数组中查找目标元素的方法 我们可以通过递归和非递归两种方式来实现它 //非递归 public static int bin ...

  5. LeetCode 108. 将有序数组转换为二叉搜索树(Convert Sorted Array to Binary Search Tree) 14

    108. 将有序数组转换为二叉搜索树 108. Convert Sorted Array to Binary Search Tree 题目描述 将一个按照升序排列的有序数组,转换为一棵高度平衡二叉搜索 ...

  6. 二分查找(Binary Search)的基本实现

    关于二分查找法二分查找法主要是解决在"一堆数中找出指定的数"这类问题. 而想要应用二分查找法,这"一堆数"必须有一下特征: 1,存储在数组中2,有序排列 所以如 ...

  7. 二分查找(binary search)java实现及时间复杂度

    概述 在一个已排序的数组seq中,使用二分查找v,假如这个数组的范围是[low...high],我们要的v就在这个范围里.查找的方法是拿low到high的正中间的值,我们假设是m,来跟v相比,如果m& ...

  8. [Swift]LeetCode108. 将有序数组转换为二叉搜索树 | Convert Sorted Array to Binary Search Tree

    Given an array where elements are sorted in ascending order, convert it to a height balanced BST. Fo ...

  9. [Swift]LeetCode109. 有序链表转换二叉搜索树 | Convert Sorted List to Binary Search Tree

    Given a singly linked list where elements are sorted in ascending order, convert it to a height bala ...

随机推荐

  1. 封装事件订阅来进行非父子组件的传值(React)

    const list={} // 将事件名和事件函数装进事件池里 function $on(name,func) { if(!name || !func) return; if(!Object.key ...

  2. Nginx(三):反向代理,负载均衡

    环境准备   配置反向代理,负载均衡,动静分离需要的必备环境,JDK,2个tomcat开启8080和8081端口. 安装jdk [root@localhost ~]# rpm -qa|grep jav ...

  3. Flink Checkpoint 参数详解

    Flink Checkpoint 参数详解 什么是 checkpoint 保存状态 Checkpoint 参数详解 StreamExecutionEnvironment env = StreamExe ...

  4. 你只用do-while来实现循环?太浪费了!

    这是道哥的第010篇原创 目录 前言 在宏定义中的妙用 错误的宏定义 比较好的宏定义 另一个也不错的宏定义 在函数体中的妙用 函数功能:返回错误代码对应的错误字符串 函数功能:通过TCP Socket ...

  5. iOS崩溃治理--开篇

    去年我开始负责iOS崩溃治理的工作,从原来的万分之五崩溃率,一直到现在的万分之一左右的崩溃率,期间踩了很多坑,因此想和大家分享一下,希望能对大家有所帮助,也欢迎大家私信交流. 如果你打算开始治理崩溃的 ...

  6. 201326JJ

    学期(如2020-2021-1) 学号(如:20201326) <信息安全专业导论>第四周学习总结 作业信息 这个作业属于哪个课程 (https://edu.cnblogs.com/cam ...

  7. Abp小试牛刀之 图片上传

    图片上传是很常见的功能,里面有些固定的操作也可以沉淀下来. 本文记录使用Abp vNext做图片上传的姿势. 本文的技术核心与Abp无关,Abp只是手段! 目标 上传图片----->预览图片-- ...

  8. oracle 19c dataguard aws ORA-03186报错

    环境说明 在亚马逊云AWS上面安装了一套oracle 19c dataguard,linux centos 7.7的操作系统,开始时同步正常,实时应用redolog,一会儿之后就不行了.报错如下: o ...

  9. 01. Consul 入门

    简介 Consul 是 HashiCorp 公司推出的开源工具,用于实现分布式系统的服务发现与配置.与其他分布式服务注册与发现的方案,Consul的方案更"一站式",内置了服务注册 ...

  10. bean中属性名和json不一致解决方案(请求和响应)

    此时@RequestBody.@ResponseBody需要与@JsonProperty结合使用,才能做到请求正常解析,响应按要求格式返回. 注意@JsonProperty注解的位置需要加在gette ...