【二分搜索树】1、二分查找法的实现 - Binary Search
简单记录 - bobo老师的玩转算法系列–玩转算法 - 二分搜索树
二叉搜索树 Binary Search Tree
查找问题 Searching Problem
查找问题是计算机中非常重要的基础问题
二分查找法 Binary Search
v
<v v >v
对于有序数列,才能使用二分查找法 (排序的作用)
二分查找法的思想在1946年提出。
第一个没有bug的二分查找法在1962年才出现。
操作:实现二分查找法
非递归的二分查找算法 BinarySearch.java
package algo;
// 非递归的二分查找算法
public class BinarySearch {
// 我们的算法类不允许产生任何实例
private BinarySearch() {}
// 二分查找法,在有序数组arr中,查找target
// 如果找到target,返回相应的索引index
// 如果没有找到target,返回-1
public static int find(Comparable[] arr, Comparable target) {
// 在arr[l...r]之中查找target
int l = 0, r = arr.length-1;
while( l <= r ){
//int mid = (l + r)/2;
// 防止极端情况下的整形溢出,使用下面的逻辑求出mid
int mid = l + (r-l)/2;
if( arr[mid].compareTo(target) == 0 )
return mid;
if( arr[mid].compareTo(target) > 0 )
r = mid - 1;
else
l = mid + 1;
}
return -1;
}
// 测试非递归的二分查找算法
public static void main(String[] args) {
int N = 1000000;
Integer[] arr = new Integer[N];
for(int i = 0 ; i < N ; i ++)
arr[i] = new Integer(i);
// 对于我们的待查找数组[0...N)
// 对[0...N)区间的数值使用二分查找,最终结果应该就是数字本身
// 对[N...2*N)区间的数值使用二分查找,因为这些数字不在arr中,结果为-1
for(int i = 0 ; i < 2*N ; i ++) {
int v = BinarySearch.find(arr, new Integer(i));
if (i < N)
assert v == i;
else
assert v == -1;
}
return;
}
}
使用递归地方式实现二分查找法
递归实现通常思维起来更容易。
递归在性能上会略差。
练习:实现二分查找法的递归实现
package algo;
// 递归的二分查找算法
public class BinarySearch2 {
// 我们的算法类不允许产生任何实例
private BinarySearch2() {}
private static int find(Comparable[] arr, int l, int r, Comparable target){
if( l > r )
return -1;
//int mid = (l+r)/2;
// 防止极端情况下的整形溢出,使用下面的逻辑求出mid
int mid = l + (r-l)/2;
if( arr[mid].compareTo(target) == 0 )
return mid;
else if( arr[mid].compareTo(target) > 0 )
return find(arr, l, mid-1, target);
else
return find(arr, mid+1, r, target);
}
// 二分查找法,在有序数组arr中,查找target
// 如果找到target,返回相应的索引index
// 如果没有找到target,返回-1
public static int find(Comparable[] arr, Comparable target) {
return find(arr, 0, arr.length-1, target);
}
// 测试递归的二分查找算法
public static void main(String[] args) {
int N = 1000000;
Integer[] arr = new Integer[N];
for(int i = 0 ; i < N ; i ++)
arr[i] = new Integer(i);
// 对于我们的待查找数组[0...N)
// 对[0...N)区间的数值使用二分查找,最终结果应该就是数字本身
// 对[N...2*N)区间的数值使用二分查找,因为这些数字不在arr中,结果为-1
for(int i = 0 ; i < 2*N ; i ++) {
int v = BinarySearch2.find(arr, new Integer(i));
if (i < N)
assert v == i;
else
assert v == -1;
}
return;
}
}
比较
Main
package algo;
import algo.BinarySearch;
import algo.BinarySearch2;
// 比较非递归和递归写法的二分查找的效率
// 非递归算法在性能上有微弱优势
public class Main {
private Main(){}
public static void main(String[] args) {
int N = 1000000;
Integer[] arr = new Integer[N];
for(int i = 0 ; i < N ; i ++)
arr[i] = new Integer(i);
// 测试非递归二分查找法
long startTime = System.currentTimeMillis();
// 对于我们的待查找数组[0...N)
// 对[0...N)区间的数值使用二分查找,最终结果应该就是数字本身
// 对[N...2*N)区间的数值使用二分查找,因为这些数字不在arr中,结果为-1
for(int i = 0 ; i < 2*N ; i ++) {
int v = BinarySearch.find(arr, new Integer(i));
if (i < N)
assert v == i;
else
assert v == -1;
}
long endTime = System.currentTimeMillis();
System.out.println("Binary Search (Without Recursion): " + (endTime - startTime) + "ms");
// 测试递归的二分查找法
startTime = System.currentTimeMillis();
// 对于我们的待查找数组[0...N)
// 对[0...N)区间的数值使用二分查找,最终结果应该就是数字本身
// 对[N...2*N)区间的数值使用二分查找,因为这些数字不在arr中,结果为-1
for(int i = 0 ; i < 2*N ; i ++) {
int v = BinarySearch2.find(arr, new Integer(i));
if (i < N)
assert v == i;
else
assert v == -1;
}
endTime = System.currentTimeMillis();
System.out.println("Binary Search (With Recursion): " + (endTime - startTime) + "ms");
}
}
D:\Environments\jdk-11.0.2\bin\java.exe -javaagent:D:\Java\ideaIU-2019.2.win\lib\idea_rt.jar=9455:D:\Java\ideaIU-2019.2.win\bin -Dfile.encoding=UTF-8 -classpath D:\IdeaProjects\imooc\Learning-Algorithms\05-Binary-Search-Tree\out\production\01-Binary-Search algo.Main
Binary Search (Without Recursion): 337ms
Binary Search (With Recursion): 514ms
Process finished with exit code 0
比较非递归和递归写法的二分查找的效率
非递归算法在性能上有微弱优势
【二分搜索树】1、二分查找法的实现 - Binary Search的更多相关文章
- [Swift]LeetCode272. 最近的二分搜索树的值 II $ Closest Binary Search Tree Value II
Given a non-empty binary search tree and a target value, find k values in the BST that are closest t ...
- 二分查找(Binary Search)
二分查找(Binary Search): int BinarySearch(int *array, int N, int key) { ; int left, right, mid; left = ; ...
- Leetcode之二分法专题-704. 二分查找(Binary Search)
Leetcode之二分法专题-704. 二分查找(Binary Search) 给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 t ...
- 二分查找(Binary Search)的递归和非递归
Binary Search 有时候我们也把它叫做二进制查找 是一种较为高效的再数组中查找目标元素的方法 我们可以通过递归和非递归两种方式来实现它 //非递归 public static int bin ...
- LeetCode 108. 将有序数组转换为二叉搜索树(Convert Sorted Array to Binary Search Tree) 14
108. 将有序数组转换为二叉搜索树 108. Convert Sorted Array to Binary Search Tree 题目描述 将一个按照升序排列的有序数组,转换为一棵高度平衡二叉搜索 ...
- 二分查找(Binary Search)的基本实现
关于二分查找法二分查找法主要是解决在"一堆数中找出指定的数"这类问题. 而想要应用二分查找法,这"一堆数"必须有一下特征: 1,存储在数组中2,有序排列 所以如 ...
- 二分查找(binary search)java实现及时间复杂度
概述 在一个已排序的数组seq中,使用二分查找v,假如这个数组的范围是[low...high],我们要的v就在这个范围里.查找的方法是拿low到high的正中间的值,我们假设是m,来跟v相比,如果m& ...
- [Swift]LeetCode108. 将有序数组转换为二叉搜索树 | Convert Sorted Array to Binary Search Tree
Given an array where elements are sorted in ascending order, convert it to a height balanced BST. Fo ...
- [Swift]LeetCode109. 有序链表转换二叉搜索树 | Convert Sorted List to Binary Search Tree
Given a singly linked list where elements are sorted in ascending order, convert it to a height bala ...
随机推荐
- 七牛云上传视频(后端获取tolen)
参照网址 https://developer.qiniu.com/kodo/sdk/1242/python #pip install qiniufrom qiniu import Auth #需要填写 ...
- JavaSE20-线程&同步
1.线程 1.1 基本概念 线程的概念 线程(Thread)是操作系统能够进行运算调度的最小单位.它被包含在进程之中,是进程中的实际运作单位.一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并 ...
- 3分钟快速搞懂Java的桥接方法
什么是桥接方法? Java中的桥接方法(Bridge Method)是一种为了实现某些Java语言特性而由编译器自动生成的方法. 我们可以通过Method类的isBridge方法来判断一个方法是否是桥 ...
- 牛客练习赛 73 D
题目链接 离别 离线算法+线段树 容易发现当我们枚举右端点r时,符合条件的左端点是一段连续的区间 我们可以用队列来维护这个连续区间的左右端点 当枚举到端点\(i\)时,将下标\(i\)插入到队列\(q ...
- vue第十二单元(vue中过渡效果的实现)
第十二单元(vue中过渡效果的实现) #课程目标 熟练掌握transition组件的用法 熟练使用transition组件做过渡特效 熟练使用transition组件做动画特效 了解使用transit ...
- Spark内核-任务调度机制
作者:十一喵先森 链接:https://juejin.im/post/5e1c414fe51d451cad4111d1 来源:掘金 著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. ...
- Liunx运维(三)-文件过滤及内容编辑处理
文档目录: 一.cat:合并文件或查看文件内容 二.tac:反向显示文件内容 三.more:分页显示文件内容 四.less:分页显示文件内容 五.head:显示文件头部内容 六.tail:显示文件尾部 ...
- python简单爬去前程无忧信息招聘
import sys reload(sys) sys.setdefaultencoding('utf-8') import requests import csv from BeautifulSoup ...
- Winform Dock顺序调整
在布局的时候,当一个窗体内有多个控件使用了Dock属性来布局,Dock顺序的调整: 最近被.net winform中的控件布局搞困惑了,由于控件都是使用Dock方式的,操作起来也是比较方便,如果最大化 ...
- 机器学习 第4篇:数据预处理(sklearn 插补缺失值)
由于各种原因,现实世界中的许多数据集都包含缺失值,通常把缺失值编码为空白,NaN或其他占位符.但是,此类数据集与scikit-learn估计器不兼容,这是因为scikit-learn的估计器假定数组中 ...