1. Rosenbrock 函数

在数学最优化中,Rosenbrock 函数是一个用来测试最优化算法性能的非凸函数,由Howard Harry Rosenbrock 在 1960 年提出 。也称为 Rosenbrock 山谷或 Rosenbrock 香蕉函数,也简称为香蕉函数。

Rosenbrock 函数的定义如下:

f(x)=100(y−x2)2+(1−x)2

Rosenbrock 函数的每个等高线大致呈抛物线形,其全域最小值也位在抛物线形的山谷中(香蕉型山谷)。很容易找到这个山谷,但由于山谷内的值变化不大,要找到全域的最小值相当困难。

这篇文章分别用 Python 和 Math.Net 求Rosenbrock函数的最小值

2. Python

Python 里面的 scipy.optimize 提供了丰富的优化算法,对于 Rosenbrock函数,它的求解代码如下:

import numpy as np
from scipy.optimize import minimize
def rosenbrock(x):
    return (1 - x[0])**2 + 100 * ((x[1] - x[0] * x[0])**2)
x0 = np.array([1.2, 1.2])
best = minimize(rosenbrock, x0)
print(best)

minimize 有两个参数,其中 rosenbrock 是要去求得最小值得 objective function;x0 是初始值,有时候初始值对结果影响很大。

上面代码得输出如下:

     fun: 3.3496916936926394e-12
hess_inv: array([[0.49944334, 0.99865554],
[0.99865554, 2.00167338]])
jac: array([-4.95083209e-05, 2.79682766e-05])
message: 'Desired error not necessarily achieved due to precision loss.'
nfev: 159
nit: 10
njev: 49
status: 2
success: False
x: array([0.99999874, 0.9999976 ])

即 x(1) 和 y(1) 在接近 (1,1) 的情况下,Rosenbrock 函数有最小值,最小值接近 0。

也可以通过参数 'method='nelder-mead' 指定 minimize 使用 Nelder-Mead 算法,Nelder-Mead 算法是一种求多元函数局部最小值的算法,其优点是不需要函数可导并能较快收敛到局部最小值。使用 Nelder-Mead 算法的输出结果如下:

final_simplex: (array([[0.999993  , 0.99998474],
[0.99995096, 0.99990431],
[1.00003347, 1.00007239]]), array([2.05633807e-10, 2.97215547e-09, 4.09754011e-09]))
fun: 2.0563380675204333e-10
message: 'Optimization terminated successfully.'
nfev: 82
nit: 43
status: 0
success: True
x: array([0.999993 , 0.99998474])

其它参数的说明请参考 官方文档

3. Math.Net

Math.Net 是一个开源项目,旨在构建和维护涵盖基础数学的工具箱,以满足 .Net 开发人员的高级需求和日常需求。其中 Math.NET Numerics 旨在为科学、工程和日常使用中的数值计算提供方法和算法。涵盖的主题包括特殊函数,线性代数,概率模型,随机数,插值,积分变换等等。

要使用 Math.NET Numerics,首先安装它的 Nuget 包:

Install-Package MathNet.Numerics

相比 Python,Math.Net 求解 Rosenbrock 函数的代码复杂些。它先使用 ObjectiveFunction.Value 创建目标函数,然后使用 NelderMeadSimplex 的 FindMinimum 函数求解,代码如下:

using MathNet.Numerics.LinearAlgebra;
using MathNet.Numerics.LinearAlgebra.Double;
using MathNet.Numerics.Optimization;
using System; double Value(Vector<double> input)
{
return Math.Pow((1 - input[0]), 2) + 100 * Math.Pow((input[1] - input[0] * input[0]), 2);
}
var obj = ObjectiveFunction.Value(Value);
var solver = new NelderMeadSimplex(convergenceTolerance: 0.0000000001, maximumIterations: 1000);
var initialGuess = new DenseVector(new[] { 1.2, 1.2 }); var result = solver.FindMinimum(obj, initialGuess);
Console.WriteLine("Value:\t" + result.FunctionInfoAtMinimum.Value);
Console.WriteLine("Point:\t" + result.MinimizingPoint[0] + " , " + result.MinimizingPoint[1]);
Console.WriteLine("Iterations:\t" + result.Iterations);

输出如下:

Value:  5.352382362443507E-19
Point: 1.0000000007114838 , 1.0000000014059296
Iterations: 145

虽然 MathNet.Numerics.Optimization 命名空间下还提供了其它类,例如 BfgsBMinimizer 和 NewtonMinimizer,但它们还需要开发者提供梯度函数,这对我来说太复杂了,反而不如 NelderMeadSimplex 好用。

4. 最后

Math.Net 提供了很多多元函数局部最小值的算法,但比起 Python 还是简化了太多,例如我还搞不清楚 Math.Net 中的优化算法怎么添加约束条件,这方面有机会再研究研究。

分别使用 Python 和 Math.Net 调用优化算法的更多相关文章

  1. 模拟退火算法SA原理及python、java、php、c++语言代码实现TSP旅行商问题,智能优化算法,随机寻优算法,全局最短路径

    模拟退火算法SA原理及python.java.php.c++语言代码实现TSP旅行商问题,智能优化算法,随机寻优算法,全局最短路径 模拟退火算法(Simulated Annealing,SA)最早的思 ...

  2. python单例模式的实现与优化

    python单例模式的实现与优化 阅读目录(Content) 单例模式 实现单例模式的几种方式 1.使用模块 2.使用装饰器 3.使用类 4.基于__new__方法实现(推荐使用,方便) 5.基于me ...

  3. [Python陷阱]os.system调用shell脚本获取返回值

    当前有shell个脚本/tmp/test.sh,内容如下: #!/bin/bashexit 11 使用Python的os.system调用,获取返回值是: >>> ret=os.sy ...

  4. Python编程规范及性能优化(转载)

    转载地址:http://codeweblog.com/python编程规范及性能优化/

  5. python中使用ctypes调用MinGW生成的动态链接库(dll)

    关于gcc编译dll的我就不说了,网上举例一大堆,下面以g++为例. 假设有一个test.cpp文件如下: extern "C" { __declspec(dllexport) d ...

  6. JavaScript中的尾调用优化

    文章来源自:http://www.zhufengpeixun.com/qianduanjishuziliao/javaScriptzhuanti/2017-08-08/768.html JavaScr ...

  7. PHP(Math的调用)

    <script> //数学函数(用Math来调用)://round=四舍五入最接近的整数// var l = 1.1;// var y1 = Math.round(l);// docume ...

  8. 判断python对象是否可调用的三种方式及其区别

    查找资料,基本上判断python对象是否为可调用的函数,有三种方法 使用内置的callable函数 callable(func) 用于检查对象是否可调用,返回True也可能调用失败,但是返回False ...

  9. 前端项目中常用es6知识总结 -- 箭头函数及this指向、尾调用优化

    项目开发中一些常用的es6知识,主要是为以后分享小程序开发.node+koa项目开发以及vueSSR(vue服务端渲染)做个前置铺垫. 项目开发常用es6介绍 1.块级作用域 let const 2. ...

随机推荐

  1. 1.pipeline原理

    redis基本语法:https://www.cnblogs.com/xiaonq/p/7919111.html redis四篇:https://www.cnblogs.com/xiaonq/categ ...

  2. vue 事件函数传参

    事件函数传参 在元素绑定事件时候,如果我们的函数没有传参,他也会有一个默认的传参值 event 但是如果我们的函数有传参,那么它必须作为做为最后一个传参值显示传递,且必须为$event 通过代码打印我 ...

  3. IIS应用程序池配置详解及优化

    参数说明 1.常规 属性名称 属性详解 NET CLR 版本 配置应用程序池,以加载特定版本的 .NET CLR.选定的 CLR版本应与应用程序所使用的相应版本的 .NET Framework 对应. ...

  4. 基于Python PIL实现简单图片格式转化器

    基于Python PIL实现简单图片格式转化器 目录 基于Python PIL实现简单图片格式转化器 1.简介 2.前期资料准备 2.1.1如何实现图片格式转换? 2.1.2如何保存需要大小的图片? ...

  5. 2020年下征文+没有计算机经验的宝妈也可以轻松领证一次过关啦 nice !相信努力总会收获

    2020年下征文+没有计算机经验的宝妈也可以轻松领证http://www.1634.com.cn/ruankao/forum.php?mod=viewthread&tid=5363&f ...

  6. 从苹果BigSur官网学点东西

    从苹果BigSur官网学点东西 Awsome配色 这个 蓝紫渐变大底 + 简洁的 矩形状字块 + 粗细层次字形,看着就蛮舒服. 看看css配色: .section-hero div[data-comp ...

  7. CSS —— css属性

    1.颜色属性 background-color: #CCCCCC; rgba (红色,绿色,蓝色,透明度) background-color: rgba( 0, 0, 0, 5 ) 2.字体属性 fo ...

  8. angular8 大地老师学习笔记---第六课

    export class TodolistComponent implements OnInit { public keyword:string; public todolist:any[]=[]; ...

  9. pixi.js 简单交互事件(点击、缩放、平移)

    注意:本文代码使用的Pixi.js版本为PixiJS 5.3.3 pixi中常用的鼠标交互事件: //兼容鼠标和触摸屏的共同触发 type InteractionPointerEvents = &qu ...

  10. IT 界那些朗朗上口的“名言

    中国有很多古代警世名言,朗朗上口,凝聚了很多故事与哲理.硅谷的互联网公司里头也有一些这样的名言,凝聚了很多公司价值观和做事的方法,对于很多程序员来说,其影响潜移默化.这里收集了一些,如下. Stay ...