如果只考虑某个子矩阵的话,其最大值为v的方案数显然是vsize-(v-1)size。问题在于处理子矩阵间的交叉情况。

  如果两个交叉的子矩阵所要求的最大值不同,可以直接把交叉部分划给所要求的最大值较小的子矩阵。那么,所要求最大值不同的格子彼此间是独立的。于是现在可以只考虑要求相同的格子。

  直接计算似乎很麻烦。由于n很小,考虑一个很套路的容斥:至少0个不满足限制的方案数-至少1个不满足限制的方案数+至少2个不满足限制的方案数……于是我们可以枚举哪些矩阵不满足限制,剩下的随便填(当然要在所限制的最大值之内)。

  计算这些矩形的交和并也是一个有点麻烦的问题。可以离散化后暴力统计。这里离散化后应该每个位置表示一段区间比较方便,所以读入时++x2,++y2。由于数据范围实在太小怎么做都行。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define P 1000000007
#define N 13
#define y1 y3
#define y2 y4
int T,r,c,n,m,row[N<<],line[N<<],flag[N<<][N<<],ans,sum,nw,nv;
bool choose[N];
struct data
{
int x1,y1,x2,y2,v,size;
int tag[N<<][N<<];
bool operator <(const data&a) const
{
return v>a.v;
}
}a[N];
int ksm(int a,int k)
{
if (k==) return ;
int tmp=ksm(a,k>>);
if (k&) return 1ll*tmp*tmp%P*a%P;
else return 1ll*tmp*tmp%P;
}
int calc(int v)
{
memset(flag,,sizeof(flag));
for (int i=;i<=n;i++)
if (a[i].v==v&&!choose[i])
for (int j=a[i].x1;j<a[i].x2;j++)
for (int k=a[i].y1;k<a[i].y2;k++)
if (a[i].tag[j][k]) flag[j][k]=;
for (int i=;i<=n;i++)
if (choose[i])
for (int j=a[i].x1;j<a[i].x2;j++)
for (int k=a[i].y1;k<a[i].y2;k++)
if (a[i].tag[j][k]) flag[j][k]=-;
int s1=,s2=;
for (int i=;i<nw;i++)
for (int j=;j<nv;j++)
if (flag[i][j]==) s1+=(row[i+]-row[i])*(line[j+]-line[j]);
else if (flag[i][j]==-) s2+=(row[i+]-row[i])*(line[j+]-line[j]);
return 1ll*ksm(v,s1)*ksm(v-,s2)%P;
}
void dfs(int k,int s,int v)
{
if (k>n)
{
if (s&) sum=(sum-calc(v)+P)%P;
else sum=(sum+calc(v))%P;
return;
}
if (a[k].v==v) choose[k]=,dfs(k+,s+,v);
choose[k]=;dfs(k+,s,v);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj5010.in","r",stdin);
freopen("bzoj5010.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
T=read();
while (T--)
{
r=read(),c=read(),m=read(),n=read();
for (int i=;i<=n;i++)
a[i].x1=read(),a[i].y1=read(),a[i].x2=read()+,a[i].y2=read()+,a[i].v=read(),a[i].size=,memset(a[i].tag,,sizeof(a[i].tag));
int w=,v=;
for (int i=;i<=n;i++)
row[++w]=a[i].x1,row[++w]=a[i].x2,line[++v]=a[i].y1,line[++v]=a[i].y2;
row[++w]=,row[++w]=r+;line[++v]=,line[++v]=c+;
sort(row+,row+w+);sort(line+,line+v+);
nw=unique(row,row+w+)-row-,nv=unique(line,line+v+)-line-;
for (int i=;i<=n;i++)
a[i].x1=lower_bound(row+,row+nw+,a[i].x1)-row,a[i].x2=lower_bound(row+,row+nw+,a[i].x2)-row,
a[i].y1=lower_bound(line+,line+nv+,a[i].y1)-line,a[i].y2=lower_bound(line+,line+nv+,a[i].y2)-line;
sort(a+,a+n+);
memset(flag,,sizeof(flag));
for (int i=;i<=n;i++)
for (int j=a[i].x1;j<a[i].x2;j++)
for (int k=a[i].y1;k<a[i].y2;k++)
flag[j][k]=a[i].v;
for (int i=;i<=n;i++)
for (int j=;j<nw;j++)
for (int k=;k<nv;k++)
if (flag[j][k]==a[i].v) a[i].size++,a[i].tag[j][k]=;
ans=;
for (int i=;i<nw;i++)
for (int j=;j<nv;j++)
if (flag[i][j]==) ans=1ll*ans*ksm(m,(row[i+]-row[i])*(line[j+]-line[j]))%P;
for (int i=;i<=n;i++)
{
sum=;int t=i;
while (a[t+].v==a[i].v) t++;
memset(choose,,sizeof(choose));
dfs(i,,a[i].v);
ans=1ll*ans*sum%P;
i=t;
}
cout<<ans<<endl;
}
return ;
}

BZOJ5010 FJOI2017矩阵填数(容斥原理)的更多相关文章

  1. [BZOJ5010][FJOI2017]矩阵填数(状压DP)

    5010: [Fjoi2017]矩阵填数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 90  Solved: 45[Submit][Status][ ...

  2. bzoj5010: [Fjoi2017]矩阵填数

    Description 给定一个 h*w 的矩阵,矩阵的行编号从上到下依次为 1..h,列编号从左到右依次1..w.在这个矩阵中你需要在每 个格子中填入 1..m 中的某个数.给这个矩阵填数的时候有一 ...

  3. P3813 [FJOI2017]矩阵填数(组合数学)

    P3813 [FJOI2017]矩阵填数 shadowice1984说:看到计数想容斥........ 这题中,我们把图分成若干块,每块的最大值域不同 蓝后根据乘法原理把每块的方案数(互不相干)相乘. ...

  4. [FJOI2017]矩阵填数——容斥

    参考:题解 P3813 [[FJOI2017]矩阵填数] 题目大意: 给定一个 h∗w 的矩阵,矩阵的行编号从上到下依次为 1...h ,列编号从左到右依次 1...w . 在这个矩阵中你需要在每个格 ...

  5. [luogu P3813] [FJOI2017] 矩阵填数 解题报告 (容斥原理)

    题目链接: https://www.luogu.org/problemnew/show/P3813 题目: 给定一个 h*w的矩阵,矩阵的行编号从上到下依次为 1..h,列编号从左到右依次1..w. ...

  6. bzoj 5010: [Fjoi2017]矩阵填数

    Description 给定一个 h*w 的矩阵,矩阵的行编号从上到下依次为 1..h,列编号从左到右依次1..w.在这个矩阵中你需要在每 个格子中填入 1..m 中的某个数.给这个矩阵填数的时候有一 ...

  7. 【BZOJ】5010: [Fjoi2017]矩阵填数

    [算法]离散化+容斥原理 [题意]给定大矩阵,可以每格都可以任意填1~m,给定n个子矩阵,要求满足子矩阵内的最大值为vi,求方案数. n<=10,h,w<=1w. [题解] 此题重点之一在 ...

  8. P3813 [FJOI2017]矩阵填数

    传送门 矩阵很大,但是发现 $n$ 很小,从这边考虑,对于一个一堆小矩阵放在一起的情况 考虑把每一块单独考虑然后方案再乘起来 但是这些奇怪的东西很不好考虑 所以暴力一点,直接拆成一个个小块 但是这样我 ...

  9. [FJOI2017]矩阵填数

    [Luogu3813] [LOJ2280] 写得很好的题解 \(1.\)离散化出每一块内部不互相影响的块 \(2.\)\(dp[i][j]\)为前 \(i\) 种重叠块其中有 \(j\) 这些状态的矩 ...

随机推荐

  1. C++多线程的使用

    很多的时候会遇到多线程跑 ,接下来就写了一个 多线程的demo  废话不说直接上代码 #include <iostream> #include <pthread.h> //多线 ...

  2. Android学习之基础知识十三 — 四大组件之服务详解第二讲(完整版的下载示例)

    上一讲学习了很多关于服务的使用技巧,但是当在真正的项目里需要用到服务的时候,可能还会有一些棘手的问题让你不知所措.接下来就来综合运用一下,尝试实现一下在服务中经常会使用到的功能——下载. 在这一讲我们 ...

  3. Linux DNS原理简介及配置

    Linux DNS原理简介及配置 DNS简介 DNS原理 域名解析的过程 资源记录 DNS BIND安装配置 一.简介 一般来讲域名比IP地址更加的有含义.也更容易记住,所以通常用户更习惯输入域名来访 ...

  4. P4111 [HEOI2015]小Z的房间

    你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子.在一开始的时候,相邻的格子之间都有墙隔着.你想要打通一些相邻房间的墙,使得所有房间能够互相到达.在此过程中,你不能把 ...

  5. 搭建SSH服务

    1.安装 ssh-server 通过命令进行安装:sudo apt-get install openssh-server 在安装时遇到问题,根据提示,执行命令:sudo apt-get update, ...

  6. 用JavaDoc生成项目文档

    项目到了尾声,大家都开始头疼——又要写文档了……是的,我们大多数人都不是从正规的Programer训练出来的.当初学习编程序的时候,就从来没有想过要给自己写的那几个程序编写一份完整的文档,所有的注释都 ...

  7. EF性能优化-有人说EF性能低,我想说:EF确实不如ADO.NET

    十年河东,十年河西,莫欺少年穷. EF就如同那个少年,ADO.NET则是一位壮年.毕竟ADO.NET出生在EF之前,而EF所走的路属于应用ADO.NET. 也就是说:你所写的LINQ查询,最后还是要转 ...

  8. 使用Pandas_UDF快速改造Pandas代码

    1. Pandas_UDF介绍 PySpark和Pandas之间改进性能和互操作性的其核心思想是将Apache Arrow作为序列化格式,以减少PySpark和Pandas之间的开销. Pandas_ ...

  9. SSL踩坑ERR_SSL_VERSION_OR_CIPHER_MISMATCH

    最近公司项目开发了一个微信小程序,并且部署测试OK,由于微信小程序调用的后端接口必须是HTTPS,所以给接口安装了SSL,第一天测试都正常.第二天早上再使用时页面无响应. 抓包发现是后端接口抛出: n ...

  10. 一次Java内存泄漏调试的有趣经历

    人人都会犯错,但一些错误是如此的荒谬,我想不通怎么会有人犯这种错误.更没想到的是,这种事竟发生在了我们身上.当然,这种东西只有事后才能发现真相.接下来,我将讲述一系列最近在我们一个应用上犯过的这种错误 ...