BZOJ5093 图的价值(NTT+斯特林数)
显然每个点会提供相同的贡献。于是现在只考虑1号点的贡献。若其度数为i,则在2~n号点选i个连上,剩下的边随便连,这样可以算出答案为
这个式子可以O(n)计算。发现k比较小,于是考虑如何将这个式子化为与k有关的求和。
显然前面一部分可以直接提走。考虑后面一部分的组合意义:n-1个有标号盒子里面选i个,放进去k个球的方案数
可以对这个过程进行变换:把k个球放在n-1个有标号盒子里,有球的盒子必须选,没有的可选可不选的方案数
枚举有球的盒子有多少个,可以发现答案变成了一个与k有关的式子:
S(k,i)为第二类斯特林数,也即将k个小球放进i个盒子(每个盒子非空)的方案数。
问题变为快速求斯特林数。可以用容斥原理推导出斯特林数卷积形式的通项公式:
即给盒子标上号,枚举有几个空盒。再化一下:
这样卷积形式就很明显了。用NTT算一下即可。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define P 998244353
#define N 300000
int n,k,a[N],v[N<<],s[N<<],inv[N],ans,ans2;
int t,r[N<<];
int ksm(int a,int k)
{
if (k==) return ;
int tmp=ksm(a,k>>);
if (k&) return 1ll*tmp*tmp%P*a%P;
else return 1ll*tmp*tmp%P;
}
void inc(int &x,int y){x+=y;if (x>=P) x-=P;}
void DFT(int n,int *a,int p)
{
for (int i=;i<n;i++) if (i<r[i]) swap(a[i],a[r[i]]);
for (int i=;i<=n;i<<=)
{
int wn=ksm(p,(P-)/i);
for (int j=;j<n;j+=i)
{
int w=;
for (int k=j;k<j+(i>>);k++,w=1ll*w*wn%P)
{
int x=a[k],y=1ll*w*a[k+(i>>)]%P;
a[k]=(x+y)%P;a[k+(i>>)]=(x-y+P)%P;
}
}
}
}
int main()
{
freopen("bzoj5093.in","r",stdin);
freopen("bzoj5093.out","w",stdout);
n=read(),k=read();
ans=1ll*n*ksm(,1ll*(n-)*(n-)/%(P-))%P;
n--;
inv[]=;
for (int i=;i<=max(,min(n,k));i++) inv[i]=(P-1ll*(P/i)*inv[P%i]%P)%P;
a[]=ksm(,n);
for (int i=;i<=min(n,k);i++)
a[i]=1ll*a[i-]*inv[]%P*(n-i+)%P;
v[]=;
for (int i=;i<=min(n,k);i++)
v[i]=(P-1ll*v[i-]*inv[i]%P)%P;
s[]=;int facinv=;
for (int i=;i<=min(n,k);i++)
{
facinv=1ll*facinv*inv[i]%P;
s[i]=1ll*ksm(i,k)*facinv%P;
}
t=;while (t<=(min(n,k)<<)) t<<=;
for (int i=;i<t;i++) r[i]=(r[i>>]>>)|(i&)*(t>>);
DFT(t,s,),DFT(t,v,);
for (int i=;i<t;i++) s[i]=1ll*s[i]*v[i]%P;
DFT(t,s,inv[]);
int p=ksm(t,P-);
for (int i=;i<t;i++) s[i]=1ll*s[i]*p%P;
for (int i=;i<=min(n,k);i++)
inc(ans2,1ll*a[i]*s[i]%P);
ans=1ll*ans*ans2%P;
cout<<ans;
fclose(stdin);fclose(stdout);
return ;
}
BZOJ5093 图的价值(NTT+斯特林数)的更多相关文章
- BZOJ.5093.[Lydsy1711月赛]图的价值(NTT 斯特林数)
题目链接 对于单独一个点,我们枚举它的度数(有多少条边)来计算它的贡献:\[\sum_{i=0}^{n-1}i^kC_{n-1}^i2^{\frac{(n-2)(n-1)}{2}}\] 每个点是一样的 ...
- 【bzoj5093】 [Lydsy1711月赛]图的价值 组合数+斯特林数+NTT
Description "简单无向图"是指无重边.无自环的无向图(不一定连通). 一个带标号的图的价值定义为每个点度数的k次方的和. 给定n和k,请计算所有n个点的带标号的简单无向 ...
- [BZOJ5093]图的价值(NTT+第二类Stirling数)
5093: [Lydsy1711月赛]图的价值 Time Limit: 30 Sec Memory Limit: 256 MBSubmit: 250 Solved: 130[Submit][Sta ...
- 【题解】BZOJ5093图的价值(二项式+NTT)
[题解]BZOJ5093图的价值(二项式+NTT) 今天才做这道题,是我太弱了 强烈吐槽c++这种垃圾语言tmd数组越界不re反倒去别的数组里搞事情我只想说QAQ 推了一张A4纸的式子 考虑每个点的度 ...
- [CF932E]Team Work & [BZOJ5093]图的价值
CF题面 题意:求\(\sum_{i=0}^{n}\binom{n}{i}i^k\) \(n\le10^9,k\le5000\) 模\(10^9+7\) BZOJ题面 题意:求\(n*2^{\frac ...
- bzoj5093:图的价值(第二类斯特林数+NTT)
传送门 首先,题目所求为\[n\times 2^{C_{n-1}^2}\sum_{i=0}^{n-1}C_{n-1}^ii^k\] 即对于每个点\(i\),枚举它的度数,然后计算方案.因为有\(n\) ...
- BZOJ5093图的价值(斯特林数)
题目描述 “简单无向图”是指无重边.无自环的无向图(不一定连通). 一个带标号的图的价值定义为每个点度数的k次方的和. 给定n和k,请计算所有n个点的带标号的简单无向图的价值之和. 因为答案很大,请对 ...
- bzoj 5093 [Lydsy1711月赛]图的价值 NTT+第二类斯特林数
[Lydsy1711月赛]图的价值 Time Limit: 30 Sec Memory Limit: 256 MBSubmit: 245 Solved: 128[Submit][Status][D ...
- bzoj5093图的价值:多项式,斯特林数(二项式反演)
Description “简单无向图”是指无重边.无自环的无向图(不一定连通). 一个带标号的图的价值定义为每个点度数的k次方的和. 给定n和k,请计算所有n个点的带标号的简单无向图的价值之和. 因为 ...
随机推荐
- Android学习之基础知识四-Activity活动7讲(活动的启动模式)
在实际的项目开发中,我们需要根据特定的需求为每个活动指定恰当的启动模式.Activity的启动模式一共有4种:standard.singleTop.singleTask.singleInstance. ...
- 8-51单片机ESP8266学习-AT指令(单片机采集温湿度数据通过8266发送给C#TCP客户端显示)
http://www.cnblogs.com/yangfengwu/p/8785516.html 先写单片机端的程序 先把源码和资料链接放到这里 链接: https://pan.baidu.com/s ...
- sql语句,查询昨天的数据
如果在程序中,有前台传来两个时间点:beginTime和endTime,在sql查询中的限制条件就是查询昨天的数据,那么可以这样写: 但是如果在这里要查询昨天的数据的话, 则不能简单地在开始时间的那里 ...
- npm install报错 npm ERR! enoent ENOENT: no such file or directory
在npm之后出现如下错误: $ npm install npm WARN checkPermissions Missing write access to /Users/lucas/code/js/v ...
- 从github checkout子文件夹
1.将远程项目加载到指定目录:$git init; $git remote add -f origin url2.使用SparseCheckout模式:$git config core.sparsec ...
- Luogu P1306 斐波那契公约数
这道题其实是真的数学巨佬才撸的出来的题目了 但如果只知道结论但是不知道推导过程的我感觉证明无望 首先这道题肯定不能直接搞,而且题目明确说明了一些方法的问题 所以就暗示我们直接上矩阵了啦 但是如果直接搞 ...
- [linux]查询多个 trace 文件中,包含特定内容的文件
例如 目录是 /home/oracle/abc/trace 命令如下:oracle@node1 trace]$ find ./ -name "*.trc" | xargs grep ...
- Windows 窗体中的事件顺序
来自:https://docs.microsoft.com/zh-cn/dotnet/framework/winforms/order-of-events-in-windows-forms 对于依次处 ...
- 2018年高教社杯全国大学生数学建模竞赛D题解题思路
题目 D题 汽车总装线的配置问题 一.问题背景 某汽车公司生产多种型号的汽车,每种型号由品牌.配置.动力.驱动.颜色5种属性确定.品牌分为A1和A2两种,配置分为B1.B2.B3.B4.B5和B6 ...
- 我的AutoHotkey脚本
#NoEnv ; Recommended for performance and compatibility with future AutoHotkey releases. ; #Warn ; En ...