[poj P2976] Dropping tests

Time Limit: 1000MS  Memory Limit: 65536K

Description

In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be

.

Given your test scores and a positive integer k, determine how high you can make your cumulative average if you are allowed to drop any k of your test scores.

Suppose you take 3 tests with scores of 5/5, 0/1, and 2/6. Without dropping any tests, your cumulative average is . However, if you drop the third test, your cumulative average becomes .

Input

The input test file will contain multiple test cases, each containing exactly three lines. The first line contains two integers, 1 ≤ n ≤ 1000 and 0 ≤ k < n. The second line contains n integers indicating ai for all i. The third line contains n positive integers indicating bi for all i. It is guaranteed that 0 ≤ ai ≤ bi ≤ 1, 000, 000, 000. The end-of-file is marked by a test case with n = k = 0 and should not be processed.

Output

For each test case, write a single line with the highest cumulative average possible after dropping k of the given test scores. The average should be rounded to the nearest integer.

Sample Input

3 1
5 0 2
5 1 6
4 2
1 2 7 9
5 6 7 9
0 0

Sample Output

83
100

Hint

To avoid ambiguities due to rounding errors, the judge tests have been constructed so that all answers are at least 0.001 away from a decision boundary (i.e., you can assume that the average is never 83.4997).

Source

01分数规划入门题。

这个不等式会经常看到:sigma(ai)/sigma(bi)>=(或<=)k

对于这题来说就是,找出最大的k,使得100*sigma(ai)/sigma(bi)>=k。

我们尝试化简上式。

因为bi>=0,所以sigma(bi)>=0,100*sigma(ai)>=k*sigma(bi)

100*sigma(ai)-k*sigma(bi)>=0

sigma(100*ai-k*bi)>=0

那么,我们只要先枚举一个k,将100*ai-k*bi作为关键字排序,再选出前n-k大的,判断一下sum是否非负就行了。

然后我们发现,上式满足单调性,枚举可以改为用二分。所以总复杂度是O(nlog分数)。

然后这一题我先开大100倍,然后最后再缩小100倍,但是这也会有精度误差。

总之,开大的倍数越大,误差越小,但效率越低,但也低不到哪里去qwq

code:

 #include<cstdio>
 #include<cstring>
 #include<algorithm>
 #define LL long long
 #define M ((L)+(R)>>1)
 using namespace std;
 ,lim=;
 int n,k,L,R,ans,final; LL sum;
 struct ob {LL a,b,c;}o[N];
 bool cmp(ob x,ob y) {return x.c>y.c;}
 bool jug(LL lv) {
     ; i<=n; i++) o[i].c=o[i].a*lim-lv*o[i].b;
     sort(o+,o++n,cmp);
     sum=;
     ; i<=n-k; i++) sum+=o[i].c;
     ;
 }
 int main() {
     while (scanf("%d%d",&n,&k)!=EOF,n|k) {
         ; i<=n; i++) scanf("%lld",&o[i].a);
         ; i<=n; i++) scanf("%lld",&o[i].b);
         ,R=lim; L<=R; )
             ;
             ;
         final=ans/; ans%=;
         ) final+=;
         printf("%d\n",final);
     }
     ;
 }

[poj P2976] Dropping tests的更多相关文章

  1. POJ - 2976 Dropping tests && 0/1 分数规划

    POJ - 2976 Dropping tests 你有 \(n\) 次考试成绩, 定义考试平均成绩为 \[\frac{\sum_{i = 1}^{n} a_{i}}{\sum_{i = 1}^{n} ...

  2. 二分算法的应用——最大化平均值 POJ 2976 Dropping tests

    最大化平均值 有n个物品的重量和价值分别wi 和 vi.从中选出 k 个物品使得 单位重量 的价值最大. 限制条件: <= k <= n <= ^ <= w_i <= v ...

  3. POJ 2976 Dropping tests(01分数规划)

    Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total Submissions:17069   Accepted: 5925 De ...

  4. POJ 2976 Dropping tests 【01分数规划+二分】

    题目链接:http://poj.org/problem?id=2976 Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  5. POJ 2976 Dropping tests(01分数规划入门)

    Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11367   Accepted: 3962 D ...

  6. POJ 2976 Dropping tests 01分数规划 模板

    Dropping tests   Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6373   Accepted: 2198 ...

  7. POJ 2976 Dropping tests (0/1分数规划)

    Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4654   Accepted: 1587 De ...

  8. Poj 2976 Dropping tests(01分数规划 牛顿迭代)

    Dropping tests Time Limit: 1000MS Memory Limit: 65536K Description In a certain course, you take n t ...

  9. poj 2976 Dropping tests 二分搜索+精度处理

    Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8349   Accepted: 2919 De ...

随机推荐

  1. [js]js杂项陆续补充中...

    hasOwnProperty判断对象是否有这个属性 p = { 'name': 'maotai', 'age': 22 }; console.log(p.hasOwnProperty('names') ...

  2. XMLHttpRequest请求被劫持

    十几个请求中随机一个转到 <html><head><script language="javascript">setTimeout(" ...

  3. NGUI与特效的层级关系

    通过调整特效的 render queue 来解决特效与NGUI界面之间的层级关系问题,用以下脚本解决: using System.Collections.Generic; using UnityEng ...

  4. CentOS 7 之 Systemd 入门教程:命令篇

    Systemd 是 Linux 系统工具,用来启动守护进程,已成为大多数发行版的标准配置 历史上,Linux 的启动一直采用init进程 下面的命令用来启动服务 [root@DaMoWang ~]# ...

  5. jQuery实现购物车物品数量的加减

    基于jquery的一款代码,实现购物车数据的加减,在淘宝网.京东商城购物时时经常见到的一个功能,点击文本框两侧的“+”与“-”,就可以增加或减少文本框内的数字值,每次步长为1,当然这个是可以自己设置的 ...

  6. WebForm内置对象:Session、Cookie,登录和状态保持

    1.Request -获取请求对象 string s =Request["key"]; 2.Response  -  响应请求对象 Response.Redirect(" ...

  7. 正则表达式中test,match,exec区别

    testtest 返回 Boolean,查找对应的字符串中是否存在模式.var str = "1a1b1c";var reg = new RegExp("1." ...

  8. eclipse无法断点调试JDK源码的问题

    最近换了新版的eclipse,在jdk源码里面,打断点发现无法进入源码调试,程序直接跳过,已查资料发现自己eclipse配置的是jre环境的. 此处要配成jdk目录才有效 打开preferences, ...

  9. ftp权限设置大全!!!

    1.登录和对匿名用户的设置write_enable=YES                         //是否对登录用户开启写权限.属全局性设置.默认NOlocal_enable=YES    ...

  10. web文件上传

    文件上传的步骤: 1.目前Java文件上传功能都是依靠Apache组织的commons-io, fileupload两个包来实现的: 2. http://commons.apache.org/下载io ...