SIEVE 线性筛
今天来玩玩筛
英文:Sieve
有什么筛?
这里介绍:素数筛,欧拉筛,约数个数筛,约数和筛
为什么要用筛?
顾名思义,筛就是要漏掉没用的,留下有用的。最终筛出来1~n的数的一些信息。
为什么要用线性筛?
考虑最基础的线性筛素数,是O(n)的。
而一般的做法是:
1.对于每个m暴力枚举1~sqrt(m)看能否被整除。O(nsqrt(n))
2.对于每个找到的素数,用它去将所有它的倍数的数都干掉。O(nlogn)
但是,即使是第二种,也有一个log
这是因为一个合数会被它的所有质因子筛一次。要重复质因子个数次,除第一次之外都没用。
所以用线性筛
线性筛原理:
一个算法,使得每个合数只被它的最小质因子筛一次。
怎么保证呢?
素数线性筛:
先看代码:
- #include<bits/stdc++.h>
- using namespace std;
- const int N=+;
- int ps[N],cnt;
- bool v[N];
- int n,m;
- void sieve(){
- for(int i=;i<=n;i++){
- if(v[i]==){
- ps[++cnt]=i;
- }
- for(int j=;j<=cnt;j++){
- if(i*ps[j]>n) break;
- v[i*ps[j]]=;
- if(i%ps[j]==) break;
- }
- }
- }
- int main()
- {
- scanf("%d%d",&n,&m);
- sieve();
- v[]=;
- int t;
- for(int i=;i<=m;i++){
- scanf("%d",&t);
- if(v[t]) printf("No\n");
- else puts("Yes");
- }
- return ;
- }
看不懂...................
解释:
对于一个质数,之前没有被标记。肯定只会有一次查到。把它记录到素数集合里去。
然后,不论这个数是否为质数,都将已有的质数从1~cnt循环一遍,把所有的i*ps[j]标记。
当i*ps>n break,可以理解。
当i%ps==0 break.???
这个时候,ps和i不互质了,而ps第一次整除i,所以ps就是i的最小质因数。叫他ps0
而之后,ps更大,ps*i的最小质因数就不是ps了。因为i里有ps0,这个合数就等着以后i更大了,通过ps0筛掉。
ps再大,后面的ps*i的最小质因数都不是ps,所以之前直接break掉就好。
由于每个合数只会被i*ps的形式找到一次(那一次的ps就是这个合数的最小质因子)。而内层循环每一次都对应一个将v[ps*i]=1的操作。
所以内层循环均摊O(1),总共O(n)
完毕。
欧拉线性筛:
代码:fai(i) 1~i中和i互质的数的个数。
可以容斥推出公式:假设:i=p1^q1*p2^q2*....pn^qn
那么,fai(i)=p1^(q1-1)*(p1-1) * p2^(q2-1)*(p2-1) * ......pn^(qn-1) * (pn-1)
证明不是本篇想讲的。
- void sieve(){
fai[]=;- for(int i=;i<=n;i++){
- if(v[i]==){
- fai[i]=i-;
- pri[++cnt]=i;
- }
- for(int j=;j<=cnt;j++){
- if(i*pri[j]>n) break;
- v[i*pri[j]]=;
- if(i%pri[j]==) {
- fai[i*pri[j]]=fai[i]*pri[j];break;
- }
- else{
- fai[i*pri[j]]=fai[i]*(pri[j]-);
- }
- }
- }
- }
并不想从积性函数性质入手解释。
显然的,当处理到fai[i]的时候,i的值应该就知道了。i是质数就现成赋值。
考虑公式。
当i%ps==0 时,i的质因子中有ps,那么i*ps的质因子ps的次数就大于一,那么,就是fai[i]*ps了
否则,i*ps 的 ps的次数就是1,那么,ps^(1-1)*(ps-1)=(ps-1) 所以是fai[i]*(ps-1)
之后的各种操作基于线性筛的要求和特质。(即每个数只被它的最小质因子筛一次)
例题:SDOI2008 仪仗队
约数个数线性筛:
推荐:线性筛约数个数和、约数和
设x=p1^q1*p2^q2*....pn^qn
要知道公式:个数=(q1+1)*(q2+1)*...*(qn+1) 乘法原理就可以知道。
设t[i]表示i的约数个数
设e[i]表示i的最小素因子个数
①i是质数:t[i]=2,e[i]=1;
②i%pj!=0 这个时候,pj里面没有i,根据积性函数,或者乘法原理,t[i*pj]=t[i]*t[pj]=2t[i];
而 e[i*pj]=1
③i%pj==0 这个时候,pj里面至少有一个i,i也是pj的最小质因子。
t[i*pj]=t[i]/(e[i]+1)*(e[i]+2) 考虑公式,i*pj只在pj的位置上加了1,所以先除掉,再乘上去。
e[i*pj]=e[i]+1 最小素因子个数多了一个。
约数和的线性筛:
(很详细的解释)
设x=p1^q1*p2^q2*....pn^qn
首先还是要知道公式:和=(1+p1^1+...+p1^q1)*(1+p2^1+...+p2^q2)*...*(1+pn^1+...+pn^qn)
证明很简单,加数的个数显然就是约数个数,每次选择就是这个约数个数的质因数分解形式,数值就是这个约数的数值。
设t[i]表示i的约数和
设e[i]表示i的最小素因子对约数和的答案的贡献,即:(1+p1^1+...+p1^q1)(假设p1是最小质因子)
①当i是质数的时候,t[i]=i+1;e[i]=i+1;
②i%pj!=0 根据公式、积性函数性质 : t[i*pj]=t[i]*t[pj]
e[i*pj]=1+pj;
③i%pj==0
t[i*pj]=t[i]/e[i]*(pj*e[i]+1)
证明:考虑公式,i里面有pj的贡献,乘了一个pj,相当于多了一个pj^(qj+1)所以除掉后,乘上错位,再加一
而 e[i*pj]=e[i]*pj+1
就这样。代码参考上面的写就是了,没什么难度。
莫比乌斯函数筛:
知道定义就好说:
μ(i)={
0 i有平方因子
1 i的质因子个数为偶数
-1 i的质因子个数为奇数
}
根据定义直接筛就好了。
- void sieve(){
- u[]=;
- for(int i=;i<=N;i++){
- if(!vis[i]){
- u[i]=-;
- pr[++cnt]=i;
- }
- for(int j=;j<=cnt;j++){
- if(pr[j]*i>N) break;
- vis[pr[j]*i]=;
- if(i%pr[j]==) {
- u[pr[j]*i]=;break;
- }
- else u[pr[j]*i]=-u[i];
- }
- }
- }
例题:bzoj2440 完全平方数
SIEVE 线性筛的更多相关文章
- BZOJ 2693: jzptab [莫比乌斯反演 线性筛]
2693: jzptab Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1194 Solved: 455[Submit][Status][Discu ...
- BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 4436 Solved: 1957[Submit][Status][Discuss ...
- BZOJ 3309: DZY Loves Math [莫比乌斯反演 线性筛]
题意:\(f(n)\)为n的质因子分解中的最大幂指数,求\(\sum_{i=1}^n \sum_{j=1}^m f(gcd(i,j))\) 套路推♂倒 \[ \sum_{D=1}^n \sum_{d| ...
- Codeforces 893E Counting Arrays:dp + 线性筛 + 分解质因数 + 组合数结论
题目链接:http://codeforces.com/problemset/problem/893/E 题意: 共q组数据(q <= 10^5),每组数据给定x,y(x,y <= 10^6 ...
- 洛谷 - P1891 - 疯狂LCM - 线性筛
另一道数据范围不一样的题:https://www.cnblogs.com/Yinku/p/10987912.html $F(n)=\sum\limits_{i=1}^{n} lcm(i,n) $ $\ ...
- Codeforces 1047C (线性筛+因数分解)
题面 传送门 分析 1.暴力做法 首先先把每个数除以gcd(a1,a2-,an)gcd(a_1,a_2 \dots,a_n )gcd(a1,a2-,an) 可以O(namax)O(n\sqrt ...
- 莫比乌斯反演/线性筛/积性函数/杜教筛/min25筛 学习笔记
最近重新系统地学了下这几个知识点,以前没发现他们的联系,这次总结一下. 莫比乌斯反演入门:https://blog.csdn.net/litble/article/details/72804050 线 ...
- bzoj2693--莫比乌斯反演+积性函数线性筛
推导: 设d=gcd(i,j) 利用莫比乌斯函数的性质 令sum(x,y)=(x*(x+1)/2)*(y*(y+1)/2) 令T=d*t 设f(T)= T可以分块.又由于μ是积性函数,积性函数的约束和 ...
- 【BZOJ-4514】数字配对 最大费用最大流 + 质因数分解 + 二分图 + 贪心 + 线性筛
4514: [Sdoi2016]数字配对 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 726 Solved: 309[Submit][Status ...
随机推荐
- springboot+websocket 归纳收集
websocket是h5后的技术,主要实现是一个长连接跟tomcat的comet技术差不多,但websocket是基于web协议的,有更广泛的支持.当然,在处理高并发的情况下,可以结合tomcat的a ...
- hexo——轻量、简易、高逼格的博客
背景 写blog虽然经历了N多不同时代的产品,恒久不变的始终是自己无人问津的网站.虽然没几个人看,还是隔断时间就要折腾一下.从最开始的wordpress,到tale,到现在的hexo,网站变得越来越简 ...
- CentOS7中安装redis5.0
1. 环境介绍 CentOS7 (未安装Development Tools) 2. 下载Redis5.0-rc3 wget -O redis-5.0-rc3.tar.gz https://github ...
- mysql连接数设置操作(Too many connections)及设置md5值的加密密码
mysql在使用过程中,发现连接数超了~~~~ [root@linux-node1 ~]# mysql -u glance -h 192.168.1.17 -pEnter password: ERRO ...
- 使用rem进行自适应页面布局
设计师给到我们前端的设计稿一般是按照iphone6屏幕(iphone6 两倍屏 设备 分辨率(物理尺寸) 屏幕宽高 PPI 状态栏高度 导航栏高度 标签栏高度 iPhone6 750×1334 px ...
- 函数:this & return、break、continue、exit()
this this:的指向在函数定义的时候是确定不了的,只有函数执行的时候才能确定this到底指向谁,实际上this的最终指向的是那个调用它的对象在调用的时候才能决定,谁调用的就指向谁. 情景1:指向 ...
- 软件工程驻足篇章:第十七周和BugPhobia团队漫长的道别
0x01 :序言 I am a slow walker, but I never walk backwards. 成长于被爱,学着爱人 成长的故事 也是年少的星期六结束的故事 就仿佛我和BugPhob ...
- David Silver强化学习Lecture2:马尔可夫决策过程
课件:Lecture 2: Markov Decision Processes 视频:David Silver深度强化学习第2课 - 简介 (中文字幕) 马尔可夫过程 马尔可夫决策过程简介 马尔可夫决 ...
- 服务器端发送邮件签名采用Data URI scheme包含图片
要在服务器端基于HTML,拼接邮件内容,原来用户使用outlook采用了邮件签名,签名里含有公司Logo的图片,Outlook的msg文件里是专有的cid:xxxx,这里借用Data URI sche ...
- [转帖]浅析Servlet执行原理
浅析Servlet执行原理 原贴地址: https://www.cnblogs.com/wangjiming/p/10360327.html 原作者画的图挺好. 自己之前看过iis的一些配置文档 但是 ...