Pandas字符串操作及实例应用
字符串操作
字符串对象方法
val = 'a,b, guido'
val.split(',')
['a', 'b', ' guido']
pieces = [x.strip() for x in val.split(',')]
pieces
['a', 'b', 'guido']
first,second,third = pieces
'::'.join(pieces)
'a::b::guido'
'guido' in val
True
注意find和index的区别:如果找不到字符串,index将会引发一个异常(而不是返回-1)
# find不会报错
val.find(':')
-1
# 返回指定字串的出现次数
val.count(',')
2
正则表达式
如果想避免正则表达式中不需要的转义(''),则可以使用原始字符串字面量如r'C:\x'
import re
text = 'foo bar\t baz \tqux'
re.split('\s+',text)
['foo', 'bar', 'baz', 'qux']
regex = re.compile('\s+')
regex.split(text)
['foo', 'bar', 'baz', 'qux']
regex.findall(text)
[' ', '\t ', ' \t']
pandas中矢量化的字符串函数
import numpy as np
from pandas import Series
data = {'Davae':'dave@google.com','Steve':'steve@gmail.com','Rob':'rob@gmail.com','Wes':np.nan}
data
{'Davae': 'dave@google.com',
'Steve': 'steve@gmail.com',
'Rob': 'rob@gmail.com',
'Wes': nan}
data2 = Series(data)
data2
Davae dave@google.com
Steve steve@gmail.com
Rob rob@gmail.com
Wes NaN
dtype: object
data2.isnull()
Davae False
Steve False
Rob False
Wes True
dtype: bool
通过data.map,所有字符串和正则表达式方法都能被应用于各个值
对象下面的属性,可以取得所有的字符串
data2.str.contains('gmail')
Davae False
Steve True
Rob True
Wes NaN
dtype: object
# 匹配规则
regex = r'([A-Z0-9._%+-]+)@([A-Z0-9.-]+)\.([A-Z]{2,4})'
# 映射匹配
res = data2.str.findall(regex,flags = re.IGNORECASE)
res
Davae [(dave, google, com)]
Steve [(steve, gmail, com)]
Rob [(rob, gmail, com)]
Wes NaN
dtype: object
# 直接使用get属性索引取值
res_first = res.str.get(0)
res_first
Davae (dave, google, com)
Steve (steve, gmail, com)
Rob (rob, gmail, com)
Wes NaN
dtype: object
res_second = res_first.str.get(1)
res_second
Davae google
Steve gmail
Rob gmail
Wes NaN
dtype: object
res_second.str[:2]
Davae go
Steve gm
Rob gm
Wes NaN
dtype: object
示例: USDA食品数据库
import json
import pandas as pd
db = json.load(open(r'C:\Users\1\Desktop\Python\练习代码\基础模块面向对象网络编程\day2\food.json'))
len(db)
db[0].keys()
dict_keys(['id', 'description', 'tags', 'manufacturer', 'group', 'portions', 'nutrients'])
db[0]['nutrients'][0]
{'value': 25.18,
'units': 'g',
'description': 'Protein',
'group': 'Composition'}
nutrients = pd.DataFrame(db[0]['nutrients'])
nutrients[:7]
description group units value
0 Protein Composition g 25.18
1 Total lipid (fat) Composition g 29.20
2 Carbohydrate, by difference Composition g 3.06
3 Ash Other g 3.28
4 Energy Energy kcal 376.00
5 Water Composition g 39.28
6 Energy Energy kJ 1573.00
info_keys = ['description','group','id','manufacturer']
info = pd.DataFrame(db, columns=info_keys)
info.head()
description group id manufacturer
0 Cheese, caraway Dairy and Egg Products 1008
1 Cheese, cheddar Dairy and Egg Products 1009
2 Cheese, edam Dairy and Egg Products 1018
3 Cheese, feta Dairy and Egg Products 1019
4 Cheese, mozzarella, part skim milk Dairy and Egg Products 1028
info.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6636 entries, 0 to 6635
Data columns (total 4 columns):
description 6636 non-null object
group 6636 non-null object
id 6636 non-null int64
manufacturer 5195 non-null object
dtypes: int64(1), object(3)
memory usage: 207.5+ KB
# 查看食品的分类情况
pd.value_counts(info['group'])
Vegetables and Vegetable Products 812
Beef Products 618
Baked Products 496
Breakfast Cereals 403
Legumes and Legume Products 365
Fast Foods 365
Lamb, Veal, and Game Products 345
Sweets 341
Fruits and Fruit Juices 328
Pork Products 328
Beverages 278
Soups, Sauces, and Gravies 275
Finfish and Shellfish Products 255
Baby Foods 209
Cereal Grains and Pasta 183
Ethnic Foods 165
Snacks 162
Nut and Seed Products 128
Poultry Products 116
Sausages and Luncheon Meats 111
Dairy and Egg Products 107
Fats and Oils 97
Meals, Entrees, and Sidedishes 57
Restaurant Foods 51
Spices and Herbs 41
Name: group, dtype: int64
nutrients = []
for rec in db:
fnuts = pd.DataFrame(rec['nutrients'])
fnuts['id'] = rec['id']
nutrients.append(fnuts)
# 拼接所有的营养成分
nutrients = pd.concat(nutrients, ignore_index=True)
nutrients.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 389355 entries, 0 to 389354
Data columns (total 5 columns):
description 389355 non-null object
group 389355 non-null object
units 389355 non-null object
value 389355 non-null float64
id 389355 non-null int64
dtypes: float64(1), int64(1), object(3)
memory usage: 14.9+ MB
# 去重,统计重复的行
nutrients.duplicated().sum()
14179
# 直接得到去重的结果
nutrients = nutrients.drop_duplicates()
# 这是营养成分的描述和分组,上面还有食物的描述和分组
nutrients.head()
description group units value id
0 Protein Composition g 25.18 1008
1 Total lipid (fat) Composition g 29.20 1008
2 Carbohydrate, by difference Composition g 3.06 1008
3 Ash Other g 3.28 1008
4 Energy Energy kcal 376.00 1008
# 为了便于区别,需要重新命名
col_mapping = {'description':'food',
'group':'fgroup'
}
# 食物的重命名
info = info.rename(columns=col_mapping, copy=False)
info.head()
food fgroup id manufacturer
0 Cheese, caraway Dairy and Egg Products 1008
1 Cheese, cheddar Dairy and Egg Products 1009
2 Cheese, edam Dairy and Egg Products 1018
3 Cheese, feta Dairy and Egg Products 1019
4 Cheese, mozzarella, part skim milk Dairy and Egg Products 1028
# 营养成分的重命名
col_mapping = {'description':'nutrient',
'group':'nutgroup'
}
nutrients = nutrients.rename(columns=col_mapping, copy=False)
nutrients.head()
nutrient nutgroup units value id
0 Protein Composition g 25.18 1008
1 Total lipid (fat) Composition g 29.20 1008
2 Carbohydrate, by difference Composition g 3.06 1008
3 Ash Other g 3.28 1008
4 Energy Energy kcal 376.00 1008
# 两表合一,on指定两表都有列名,用外连
ndata = pd.merge(nutrients, info, on='id', how='outer')
ndata.head()
nutrient nutgroup units value id food fgroup manufacturer
0 Protein Composition g 25.18 1008 Cheese, caraway Dairy and Egg Products
1 Total lipid (fat) Composition g 29.20 1008 Cheese, caraway Dairy and Egg Products
2 Carbohydrate, by difference Composition g 3.06 1008 Cheese, caraway Dairy and Egg Products
3 Ash Other g 3.28 1008 Cheese, caraway Dairy and Egg Products
4 Energy Energy kcal 376.00 1008 Cheese, caraway Dairy and Egg Products
# 按食物和营养成分分组,得到各食物营养成分最多的食物
by_nutrient = ndata.groupby(['nutrient','fgroup'])
get_maximum = lambda x:x.xs(x.value.idxmax())
max_foods = by_nutrient.apply(get_maximum)
max_foods.head()
# 只看其中的value和food
max_foods[['value','food']].head()
value food
nutrient fgroup
Adjusted Protein Sweets 12.900 Baking chocolate, unsweetened, squares
Vegetables and Vegetable Products 2.180 Mushrooms, white, raw
Alanine Baby Foods 0.911 Babyfood, meat, ham, junior
Baked Products 2.320 Leavening agents, yeast, baker's, active dry
Beef Products 2.254 Beef, cured, breakfast strips, cooked
Pandas字符串操作及实例应用的更多相关文章
- 【Python自动化Excel】Python与pandas字符串操作
Python之所以能够成为流行的数据分析语言,有一部分原因在于其简洁易用的字符串处理能力. Python的字符串对象封装了很多开箱即用的内置方法,处理单个字符串时十分方便:对于Excel.csv等表格 ...
- PHP常用字符串操作函数实例总结(trim、nl2br、addcslashes、uudecode、md5等)
/*常用的字符串输出函数 * * echo() 输出字符串 * print() 输出一个或多个字符串 * die() 输出一条信息,并退出当前脚本 * printf() 输出格式化字符串 * spri ...
- 数据分析处理库Pandas——字符串操作
字符串小写 字符串大写 字符串长度 去掉字符串中的空格 去掉字符串中的左空格 去掉字符串中的右空格 字符串替换 按字符串切割 字符串是否包含在另一个字符串中
- python学习笔记(字符串操作、字典操作、三级菜单实例)
字符串操作 name = "alex" print(name.capitalize()) #首字母大写 name = "my name is alex" pri ...
- Python数据科学手册-Pandas:向量化字符串操作、时间序列
向量化字符串操作 Series 和 Index对象 的str属性. 可以正确的处理缺失值 方法列表 正则表达式. Method Description match() Call re.match() ...
- mysql常用字符串操作函数大全,以及实例
今天在论坛中看到一个关于mysql的问题,问题如下 good_id cat_id12654 665,56912655 601,4722 goods_id是商品i ...
- c# 字符串操作
一.字符串操作 //字符串转数组 string mystring="this is a string" char[] mychars=mystring.ToCharArray(); ...
- linux shell 字符串操作
转:http://justcoding.iteye.com/blog/1963463 在做shell批处理程序时候,经常会涉及到字符串相关操作.有很多命令语句,如:awk,sed都可以做字符串各种操作 ...
- .NET面试题解析(03)-string与字符串操作
系列文章目录地址: .NET面试题解析(00)-开篇来谈谈面试 & 系列文章索引 字符串可以说是C#开发中最常用的类型了,也是对系统性能影响很关键的类型,熟练掌握字符串的操作非常重要. 常 ...
随机推荐
- 在vue中使用Echarts画曲线图(异步加载数据)
现实的工作中, 数据不可能写死的,所有的数据都应该通过发送请求进行获取. 所以本项目的需求是请求服务器获得二维数组,并生成曲线图.曲线图的横纵坐标均从获得的数据中取得. Echarts官方文档: ht ...
- Google - chanceToLose24Game
/* 一个类似24点的游戏,假设牌桌上有无数张1-10的牌,然后你手上的牌的总和是k,现在你可以随机到牌桌上抽牌加到总和里,如果你手上牌的总和在20-25之间就是win,如果总和超过25就是lose, ...
- PythonStudy——数据类型 Type of data
数据类型:信息存在的状态为什么要来描述事物的具体状态:不同的事物需要不同的状态加以描述可以达到描述的最优化 python中有哪些常见的数据类型 1.整型 num = 10000000000000000 ...
- hasura graphql-engine 集成zombodb
zombodb 是一个很不错的pg 扩展,可以方便的把es 与pg 集成起来,使用方便 ,目前尽管有一些docker 镜像 但是版本都比较老,所以基于centos7 做了一个新的docker 镜像,同 ...
- Nginx做web服务器反向代理
实验目的 通过nginx实现反向代理的功能,类似apache反向代理和haproxy反向代理 工作中用nginx做反向代理和负载均衡的也越来越多了 有些公司从web服务器到反向代理,都使用nginx. ...
- 第2章 Java基本语法(上): 变量与运算符
2-1 关键字与保留字 关键字(keyword) 保留字(reserved word) 2-2 标识符(Identifier) 案例 class Test{ public static void ma ...
- Git 2.x 中git push时遇到 push.default 警告的解决方法
近在学习使用 git&GitHub,然后今天遇到了一个问题.在执行 git add 和 git commit 操作之后,再进行 git push 操作,出现了如下提示: $ git push ...
- DNS基础
什么是DNS? DNS--Domain name system,域名系统,简单来说就是域名和IP地址间的映射关系.当你在浏览器的地址栏输入网址(或域名,如 www,baidu.com)的时候,在网络中 ...
- 长短记忆神经网络LSTM
转载: https://www.jianshu.com/p/dcec3f07d3b5 https://blog.csdn.net/dream_catcher_10/article/details/48 ...
- docker network基础
前面介绍了nginx与php两个容器间是如何进行通信的: [root@docker ~]# docker run -d --name=php -v /www:/usr/local/nginx/html ...