初学Python.Opencv,想用它做个实例解决车牌号检测。

车牌号检测需要分为四个部分:1.车辆图像获取、2.车牌定位、3.车牌字符分割和4.车牌字符识别

在百度查到了车牌识别部分车牌定位和车牌字符分割,先介绍车牌定位部分

车牌定位需要用到的是图片二值化为黑白后进canny边缘检测后多次进行开运算与闭运算用于消除小块的区域,保留大块的区域,后用cv2.rectangle选取矩形框,从而定位车牌位置

车牌字符的分割前需要准备的是只保留车牌部分,将其他部分均变为黑色背景。这里我采用cv2.grabCut方法,可将图像分割成前景与背景。分割完成后,再经过二值化为黑白图后即可进行字符分割。由于图像中只有黑色和白色像素,因此我们需要通过图像的白色像素和黑色像素来分割开字符。即分别通过判断每一行每一列的黑色白色像素值的位置,来定位出字符。具体程序附下

# -*- coding: utf-8 -*-
"""
Created on Tue Oct 23 20:46:45 2018 @author: Administrator
""" import cv2
import numpy as np def stretch(img):
'''
图像拉伸函数
'''
maxi=float(img.max())
mini=float(img.min()) for i in range(img.shape[0]):
for j in range(img.shape[1]):
img[i,j]=(255/(maxi-mini)*img[i,j]-(255*mini)/(maxi-mini)) return img def dobinaryzation(img):
'''
二值化处理函数
'''
maxi=float(img.max())
mini=float(img.min()) x=maxi-((maxi-mini)/2)
#二值化,返回阈值ret 和 二值化操作后的图像thresh
ret,thresh=cv2.threshold(img,x,255,cv2.THRESH_BINARY)
#返回二值化后的黑白图像
return thresh def find_rectangle(contour):
'''
寻找矩形轮廓
'''
y,x=[],[] for p in contour:
y.append(p[0][0])
x.append(p[0][1]) return [min(y),min(x),max(y),max(x)] def locate_license(img,afterimg):
'''
定位车牌号
'''
img,contours,hierarchy=cv2.findContours(img,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) #找出最大的三个区域
block=[]
for c in contours:
#找出轮廓的左上点和右下点,由此计算它的面积和长度比
r=find_rectangle(c)
a=(r[2]-r[0])*(r[3]-r[1]) #面积
s=(r[2]-r[0])*(r[3]-r[1]) #长度比 block.append([r,a,s])
#选出面积最大的3个区域
block=sorted(block,key=lambda b: b[1])[-3:] #使用颜色识别判断找出最像车牌的区域
maxweight,maxindex=0,-1
for i in range(len(block)):
b=afterimg[block[i][0][1]:block[i][0][3],block[i][0][0]:block[i][0][2]]
#BGR转HSV
hsv=cv2.cvtColor(b,cv2.COLOR_BGR2HSV)
#蓝色车牌的范围
lower=np.array([100,50,50])
upper=np.array([140,255,255])
#根据阈值构建掩膜
mask=cv2.inRange(hsv,lower,upper)
#统计权值
w1=0
for m in mask:
w1+=m/255 w2=0
for n in w1:
w2+=n #选出最大权值的区域
if w2>maxweight:
maxindex=i
maxweight=w2 return block[maxindex][0] def find_license(img):
'''
预处理函数
'''
m=400*img.shape[0]/img.shape[1] #压缩图像
img=cv2.resize(img,(400,int(m)),interpolation=cv2.INTER_CUBIC) #BGR转换为灰度图像
gray_img=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) #灰度拉伸
stretchedimg=stretch(gray_img) '''进行开运算,用来去除噪声'''
r=16
h=w=r*2+1
kernel=np.zeros((h,w),np.uint8)
cv2.circle(kernel,(r,r),r,1,-1)
#开运算
openingimg=cv2.morphologyEx(stretchedimg,cv2.MORPH_OPEN,kernel)
#获取差分图,两幅图像做差 cv2.absdiff('图像1','图像2')
strtimg=cv2.absdiff(stretchedimg,openingimg) #图像二值化
binaryimg=dobinaryzation(strtimg) #canny边缘检测
canny=cv2.Canny(binaryimg,binaryimg.shape[0],binaryimg.shape[1]) '''消除小的区域,保留大块的区域,从而定位车牌'''
#进行闭运算
kernel=np.ones((5,19),np.uint8)
closingimg=cv2.morphologyEx(canny,cv2.MORPH_CLOSE,kernel) #进行开运算
openingimg=cv2.morphologyEx(closingimg,cv2.MORPH_OPEN,kernel) #再次进行开运算
kernel=np.ones((11,5),np.uint8)
openingimg=cv2.morphologyEx(openingimg,cv2.MORPH_OPEN,kernel) #消除小区域,定位车牌位置
rect=locate_license(openingimg,img) return rect,img def cut_license(afterimg,rect):
'''
图像分割函数
'''
#转换为宽度和高度
rect[2]=rect[2]-rect[0]
rect[3]=rect[3]-rect[1]
rect_copy=tuple(rect.copy())
rect=[0,0,0,0]
#创建掩膜
mask=np.zeros(afterimg.shape[:2],np.uint8)
#创建背景模型 大小只能为13*5,行数只能为1,单通道浮点型
bgdModel=np.zeros((1,65),np.float64)
#创建前景模型
fgdModel=np.zeros((1,65),np.float64)
#分割图像
cv2.grabCut(afterimg,mask,rect_copy,bgdModel,fgdModel,5,cv2.GC_INIT_WITH_RECT)
mask2=np.where((mask==2)|(mask==0),0,1).astype('uint8')
img_show=afterimg*mask2[:,:,np.newaxis] return img_show def deal_license(licenseimg):
'''
车牌图片二值化
'''
#车牌变为灰度图像
gray_img=cv2.cvtColor(licenseimg,cv2.COLOR_BGR2GRAY) #均值滤波 去除噪声
kernel=np.ones((3,3),np.float32)/9
gray_img=cv2.filter2D(gray_img,-1,kernel) #二值化处理
ret,thresh=cv2.threshold(gray_img,120,255,cv2.THRESH_BINARY) return thresh def find_end(start,arg,black,white,width,black_max,white_max):
end=start+1
for m in range(start+1,width-1):
if (black[m] if arg else white[m])>(0.98*black_max if arg else 0.98*white_max):
end=m
break
return end if __name__=='__main__':
img=cv2.imread('../image/carnumber7.jpg',cv2.IMREAD_COLOR)
#预处理图像
rect,afterimg=find_license(img) #框出车牌号
cv2.rectangle(afterimg,(rect[0],rect[1]),(rect[2],rect[3]),(0,255,0),2)
cv2.imshow('afterimg',afterimg) #分割车牌与背景
cutimg=cut_license(afterimg,rect)
cv2.imshow('cutimg',cutimg) #二值化生成黑白图
thresh=deal_license(cutimg)
cv2.imshow('thresh',thresh)
cv2.waitKey(0) #分割字符
'''
判断底色和字色
'''
#记录黑白像素总和
white=[]
black=[]
height=thresh.shape[0] #
width=thresh.shape[1] #
#print('height',height)
#print('width',width)
white_max=0
black_max=0
#计算每一列的黑白像素总和
for i in range(width):
line_white=0
line_black=0
for j in range(height):
if thresh[j][i]==255:
line_white+=1
if thresh[j][i]==0:
line_black+=1
white_max=max(white_max,line_white)
black_max=max(black_max,line_black)
white.append(line_white)
black.append(line_black)
print('white',white)
print('black',black)
#arg为true表示黑底白字,False为白底黑字
arg=True
if black_max<white_max:
arg=False n=1
start=1
end=2
while n<width-2:
n+=1
#判断是白底黑字还是黑底白字 0.05参数对应上面的0.95 可作调整
if(white[n] if arg else black[n])>(0.02*white_max if arg else 0.02*black_max):
start=n
end=find_end(start,arg,black,white,width,black_max,white_max)
n=end
if end-start>5:
cj=thresh[1:height,start:end]
cv2.imshow('cutlicense',cj)
cv2.waitKey(0) cv2.waitKey(0)
cv2.destroyAllWindows()

最后的结果图供参考

这算是识别比较好的一张图片,但是有些图片仍然识别比较差,希望有大神可以提出以下改进意见,但是鉴于自己目前处于初学者状态,就先不深究,等到以后学习精进后再回头解决目前解决不了的问题。下面附上网上大神的源代码供大家参考。

https://blog.csdn.net/m0_38024433/article/details/78650024

https://blog.csdn.net/sumkee911/article/details/79435983

2018.10.24

python中使用Opencv进行车牌号检测——2018.10.24的更多相关文章

  1. OpenCV-Python(1)在Python中使用OpenCV进行人脸检测

    OpenCV是如今最流行的计算机视觉库,而我们今天就是要学习如何安装使用OpenCV,以及如何去访问我们的摄像头.然后我们一起来看看写一个人脸检测程序是如何地简单,简单到只需要几行代码. 在开始之前, ...

  2. 转:关于Python中的lambda,这篇阅读量10万+的文章可能是你见过的最完整的讲解

    lambda是Python编程语言中使用频率较高的一个关键字.那么,什么是lambda?它有哪些用法?网上的文章汗牛充栋,可是把这个讲透的文章却不多.这里,我们通过阅读各方资料,总结了关于Python ...

  3. python中使用Opencv进行人脸检测

    这两天学习了人脸识别,看了学长写的代码,边看边码边理解搞完了一边,再又是自己靠着理解和记忆硬码了一边,感觉还是很生疏,就只能来写个随笔加深一下印象了. 关于人脸识别,首先需要了解的是级联分类器Casc ...

  4. python中使用Opencv进行人脸识别

    上一节讲到人脸检测,现在讲一下人脸识别.具体是通过程序采集图像并进行训练,并且基于这些训练的图像对人脸进行动态识别. 人脸识别前所需要的人脸库可以通过两种方式获得:1.自己从视频获取图像   2.从人 ...

  5. Android开发中的OpenCV霍夫直线检测(Imgproc.HoughLines()&Imgproc.HoughLinesP())

    本文为作者原创,转载请注明出处(http://www.cnblogs.com/mar-q/)by 负赑屃   //2017-04-21更新: 很多网友希望能得到源码,由于在公司做的,所以不太方便传出来 ...

  6. 在Python中使用OpenCV(CV2)对图像进行边缘检测

    转载:https://blog.csdn.net/cumtb2002/article/details/107798767 Modules used: 使用的模块: For this, we will ...

  7. python中的2、8、16、10进制之间的转换

    python除法的坑 众所周知,python除法有两个运算符,一个是/,还有一个是//,那么这两个有什么不同之处呢? 从图片可以得知,使用//返回一个float类型,而使用/返回一个int类型.我们总 ...

  8. Python中的不同进制的语法和转换

    不同进制的书写方式 八进制(Octal) 0o377 十六进制(Hex) 0xFF 二进制(Binary) 0b11111111 不同进制之间的转换 python提供了三个内置的函数,能够用来在不同进 ...

  9. python中使用OpenCV处理图片

    1.导入OpenCV包 import cv2 2.读取图片 cv2.imread(image_path, mode)        读入函数,包含两个参数,第一个为图片路径及图片名,第二个为读取图片方 ...

随机推荐

  1. ArcSDE账户频繁被锁定(Oracle显示12560协议适配器错误)

    最近遇到了一个比较奇葩的问题,启动系统的时候无法显示地图服务,查找原因时发现无法连接Oracle.出现以下错误: 之前遇到这种问题,通常是由于同时安装了64位和32位Oracle客户端,且二者的环境变 ...

  2. mlsql 基本操作

    数据库的操作: 1.创建 create databases python_test_01(库名,自定义)chaeset = utf8; 2.删除 drop database python_test_0 ...

  3. 12.python-metaclass元类

    1.python中一切皆是对象,类本身也是一个对象,当使用关键字class的时候,python解释器在加载class的时候会创建一个对象(这里的对象指的是类而非类的实例) class Foo: #cl ...

  4. java 实现excel 导出功能

    实现功能:java导出excel表 1.jsp代码 <form id="zhanwForm" action="<%=path%>/conferences ...

  5. Linux(Centos7)下搭建SVN服务器

    操作系统: CentOS 7.6 64位 第一步:通过yum命令安装svnserve,命令如下: 检测svn是否安装: rpm -qa subversion #检查现有版本,如果输入命令后没有提示的话 ...

  6. opencv的移植

    一.opencv在ARM上的移植 http://www.cnblogs.com/emouse/archive/2013/04/01/2993842.html http://blog.csdn.net/ ...

  7. ArrayList add方法(转)

    由于 BrowerList 输出结果都是最后一条记录,后来网上查到了 if (dRead.HasRows) { List<Class_RejectQuery> BrowerList = n ...

  8. HTML/CSS基础知识(一)

    Q:浏览器页面有哪三层构成,分别是什么,作用是什么? A:由三部分构成: 网页结构层(Structural Layer)——由(X)HTML等标记语言负责创建,实现页面结构. 网页表示层(Presen ...

  9. 杂谈2.cpp

    Ostream类定义的插入运算符(<<)使数据插入到输出流,istream定义的抽取运算符(>>)能够从输入流中抽取信息 Cin和cout都是智能对象,能够根据程序上下文将信息 ...

  10. Linux 上利用Nginx代理uWSGI处理Flask web应用

    一.介绍 最近开发要用一个测试环境,是这样的Nginx+uwsgi+flask 的一个结构.下面是一些记录,在Centos 系统上使用Flask 架构部署一个简单的Python应用.然后使用Nginx ...