BZOJ.3938.Robot(李超线段树)
以时间\(t\)为横坐标,位置\(p\)为纵坐标建坐标系,那每个机器人就是一条\(0\sim INF\)的折线。
用李超线段树维护最大最小值。对于折线分成若干条线段依次插入即可。
最好还是离线对时间离散化。
麻烦在写出来。。
复杂度\(O(c\log^2m+q\log m)\)?
以后李超树改用struct
写了...学了一种写法好方便...
//66516kb 5156ms
#include <cstdio>
#include <cctype>
#include <vector>
#include <algorithm>
#define mp std::make_pair
#define pr std::pair<int,int>
//#define gc() getchar()
#define MAXIN 500000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=1e5+5,M=5e5+5;
int cnt,ref[N+M];//n+m!
char IN[MAXIN],*SS=IN,*TT=IN;
struct Line
{
int K; LL B;
LL f(int x)
{
return 1ll*K*x+B;
}
};
struct Segment_Tree
{
#define ls rt<<1
#define rs rt<<1|1
#define lson l,m,ls
#define rson m+1,r,rs
#define S (N+M<<2)//1~n+m!
Line mn[S],mx[S];
#undef S
void ModifyMax(int l,int r,int rt,int L,int R,Line v)
{
int m=l+r>>1;
if(v.f(ref[m])>mx[rt].f(ref[m])) std::swap(v,mx[rt]);
if(l==r) return;
if(mn[rt].f(ref[l])>=v.f(ref[l]) && mn[rt].f(ref[r])>=v.f(ref[r])) return;
// if(std::max(mn[rt].f(ref[l]),mn[rt].f(ref[r]))>=std::min(v.f(ref[l]),v.f(ref[r]))) return;//为啥上面那种写法反而慢好多啊 不应该啊= =
if(v.K<mx[rt].K) ModifyMax(lson,L,R,v);
else ModifyMax(rson,L,R,v);
}
void ModifyMin(int l,int r,int rt,int L,int R,Line v)
{
int m=l+r>>1;
if(v.f(ref[m])<mn[rt].f(ref[m])) std::swap(v,mn[rt]);
if(l==r) return;
if(mn[rt].f(ref[l])<=v.f(ref[l]) && mn[rt].f(ref[r])<=v.f(ref[r])) return;
// if(std::max(mn[rt].f(ref[l]),mn[rt].f(ref[r]))<=std::min(v.f(ref[l]),v.f(ref[r]))) return;
if(v.K>mn[rt].K) ModifyMin(lson,L,R,v);
else ModifyMin(rson,L,R,v);
}
void Modify(int l,int r,int rt,int L,int R,Line v)
{
if(L<=l && r<=R)
{
ModifyMax(l,r,rt,L,R,v), ModifyMin(l,r,rt,L,R,v);//max min分开维护.
return;
}
int m=l+r>>1;
if(L<=m) Modify(lson,L,R,v);
if(m<R) Modify(rson,L,R,v);
}
LL Query(int l,int r,int rt,int p,int x)//x=ref[p]
{
LL val=std::max(std::abs(mx[rt].f(x)),std::abs(mn[rt].f(x)));
if(l==r) return val;
int m=l+r>>1;
return std::max(val,p<=m?Query(lson,p,x):Query(rson,p,x));
}
}T;
inline int read()
{
int now=0,f=1;register char c=gc();
for(;!isdigit(c);c=='-'&&(f=-1),c=gc());
for(;isdigit(c);now=now*10+c-48,c=gc());
return now*f;
}
inline char GetOpt()
{
register char c=gc();
while(c!='c'&&c!='q') c=gc();
return c;
}
inline int Find(int x)
{
int l=1,r=cnt,mid;
while(l<r)
if(ref[mid=l+r>>1]<x) l=mid+1;
else r=mid;
return l;
}
int main()
{
static int Q[M];
static std::vector<pr> vec[N];//每个机器人的折线 pair (time, slope)
const int n=read(),m=read();
for(int i=1; i<=n; ++i) vec[i].push_back(mp(0,read()));
int cnt=1,q=0; ref[1]=0;
for(int i=1,t,id; i<=m; ++i)
{
ref[i+1]=t=read();
if(GetOpt()=='q') Q[++q]=t;
else id=read(), vec[id].push_back(mp(t,read()));
}
ref[cnt=m+2]=1e9;
for(int tmp=cnt,i=(cnt=1,2); i<=tmp; ++i)
if(ref[i]!=ref[i-1]) ref[++cnt]=ref[i];
::cnt=cnt;
for(int i=1; i<=n; ++i) vec[i].push_back(mp(1e9,0));
for(int i=1; i<=n; ++i)
{
int las=Find(vec[i][1].first);//r不需要减一啊→_→
LL pos=vec[i][0].second;
T.Modify(1,cnt,1,1,las,(Line){0,pos});
for(int j=1,lim=vec[i].size()-2,l,r,k,now; j<=lim; ++j)//lim=size(),不要写l=size() →_→
{
l=vec[i][j].first, r=vec[i][j+1].first, k=vec[i][j].second;
now=Find(r);
T.Modify(1,cnt,1,las,now,(Line){k,pos-1ll*k*l});
las=now, pos+=1ll*k*(r-l);
}
}
for(int i=1; i<=q; ++i) printf("%lld\n",T.Query(1,cnt,1,Find(Q[i]),Q[i]));
return 0;
}
BZOJ.3938.Robot(李超线段树)的更多相关文章
- BZOJ.4515.[SDOI2016]游戏(树链剖分 李超线段树)
BZOJ 洛谷 每次在路径上加的数是个一次函数,容易看出是树剖+李超线段树维护函数最小值.所以其实依旧是模板题. 横坐标自然是取个确定的距离标准.取每个点到根节点的距离\(dis[i]\)作为\(i\ ...
- 【BZOJ 3165】 [Heoi2013]Segment 李超线段树
所谓李超线段树就是解决此题一类的问题(线段覆盖查询点最大(小)),把原本计算几何的题目变成了简单的线段树,巧妙地结合了线段树的标记永久化与标记下传,在不考虑精度误差的影响下,打法应该是这样的. #in ...
- bzoj 1568 李超线段树
博客:http://www.cnblogs.com/mangoyang/p/9979465.html 李超线段树支持两种操作:1:插入一条直线.2:询问在x = c与这些直线的交点中最大的y坐标. 插 ...
- BZOJ 3165 李超线段树
思路: 李超线段树 我是把线段转成斜率的形式搞得 不知道有没有更简单的方法 //By SiriusRen #include <cmath> #include <cstdio> ...
- 【BZOJ3165】[HEOI2013]Segment(李超线段树)
[BZOJ3165][HEOI2013]Segment(李超线段树) 题面 BZOJ 洛谷 题解 似乎还是模板题QwQ #include<iostream> #include<cst ...
- 【BZOJ1568】[JSOI2008]Blue Mary开公司(李超线段树)
[BZOJ1568][JSOI2008]Blue Mary开公司(李超线段树) 题面 BZOJ 洛谷 题解 是模板题啊. #include<iostream> #include<cs ...
- 有趣的线段树模板合集(线段树,最短/长路,单调栈,线段树合并,线段树分裂,树上差分,Tarjan-LCA,势能线段树,李超线段树)
线段树分裂 以某个键值为中点将线段树分裂成左右两部分,应该类似Treap的分裂吧(我菜不会Treap).一般应用于区间排序. 方法很简单,就是把分裂之后的两棵树的重复的\(\log\)个节点新建出来, ...
- 【BZOJ-4515】游戏 李超线段树 + 树链剖分 + 半平面交
4515: [Sdoi2016]游戏 Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 304 Solved: 129[Submit][Status][ ...
- 【BZOJ-3165】Segment 李超线段树(标记永久化)
3165: [Heoi2013]Segment Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 368 Solved: 148[Submit][Sta ...
随机推荐
- django----Form实时更新两种方式
在ModelForm需要知道: from app03 import models from django.forms import ModelForm class UserForm(ModelForm ...
- ftp的自动部署以及添加虚拟账户的脚本
#!/bin/bash #本脚本为自动化安装vsftp,使用虚拟用户认证登录ftp上传下载文件 echo =============================================== ...
- js 图片转换base64 base64转换为file对象
function getImgToBase64(url,callback){//将图片转换为Base64 var canvas = document.createElement('canvas'), ...
- 论文阅读笔记十五:Pyramid Scene Parsing Network(CVPR2016)
论文源址:https://arxiv.org/pdf/1612.01105.pdf tensorflow代码:https://github.com/hellochick/PSPNet-tensorfl ...
- Python面向对象 三大特性 综合案例
class Animal: # 所用的知识 Animal类的封装 -> Dog类,Cat类,Person类的继承->多态 # 把所有的共同属性和方法封装在一个公有类里面让子类继承父类的方法 ...
- Android.os.SystemClock
https://www.linuxidc.com/Linux/2011-11/48325p2.htm 文档中对System.currentTimeMillis()进行了相应的描述,就是说它不适合用在需 ...
- Android Studio运行项目报错:Error:null value in entry: annotationProcessorOutputFolder=null的解决方案
一般是在Android studio异常退出(比如强制关机)后,重新打开后运行项目出现该问题. 解决方案 删除项目根目录的.gradle文件夹,然后Clean Project —— Rebulid ...
- nginx 正则及rewrite常用规则实例
一.正则表达式匹配,其中:* ~ 为区分大小写匹配* ~* 为不区分大小写匹配* !~和!~*分别为区分大小写不匹配及不区分大小写不匹配二.文件及目录匹配,其中:* -f和!-f用来判断是否存在文件* ...
- 请推荐几个asp.net下做网站的好的开源框架
1.We7 CMS We7 CMS是由西部动力开发的一款充分发掘互联网Web2.0(如博客.RSS等)的信息组织优势,将其理念利用到政府企事业网站的构建.组织.管理中的网站建设和管理方面的产品. 系统 ...
- django 视图函数返回queryset对象或日期对象至浏览器ajax接收的写法
class MyDateTimeEncode(json.JSONEncoder): def default(self, o): if isinstance(o, datetime): return o ...