BZOJ

洛谷


考虑暴力,每次枚举三个点,答案就是\(\frac12\sum_{k<j<i}(i-k)\times(j-k)\)。

注意到叉积有分配率,所以固定\(k\),枚举\(i,j\),\(Ans=\frac12\sum_{k<i}(i-k)\sum_{k<j<i}(j-k)\),前缀和即可。

还有个问题是叉积是有符号的。初始时将所有点按纵坐标排序,枚举\(k\)的时候将所有向量\(i-k\)按极角排序。因为\(i>k\),\(i\)都在\(k\)的上方,向量之间不会超过\(180^{\circ}\),符号不会变,就可以直接前缀和了。

算的时候似乎会爆double,用long long存。

复杂度\(O(n^2\log n)\)。

另外可以直接求出向量的极角或斜率,不需要每次cmp算一次叉积。


//920kb	8544ms
#include <cstdio>
#include <cctype>
#include <algorithm>
#define gc() getchar()
typedef long long LL;
const int N=3005; struct Vec
{
LL x,y;
Vec(LL x=0,LL y=0):x(x),y(y) {}
Vec operator +(const Vec &a)const {return Vec(x+a.x, y+a.y);}
Vec operator -(const Vec &a)const {return Vec(x-a.x, y-a.y);}
Vec operator *(const LL a)const {return Vec(x*a, y*a);}
LL operator *(const Vec &a)const {return x*a.y-y*a.x;}
inline bool operator <(const Vec &a)const {return y<a.y||(y==a.y&&x<a.x);}
}p[N],v[N];
typedef Vec Point; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-48,c=gc());
return now;
}
inline bool cmp(const Vec &a,const Vec &b)
{
return a*b>0;
} int main()
{
int n=read();
for(int i=1; i<=n; ++i) p[i]=(Point){read(),read()};
std::sort(p+1,p+1+n);
LL ans=0;
for(int i=1; i+2<=n; ++i)
{
for(int j=i+1; j<=n; ++j) v[j]=p[j]-p[i];
std::sort(v+i+1,v+n+1,cmp);
Vec s=v[i+1];
for(int j=i+2; j<=n; ++j) ans+=s*v[j], s=s+v[j];
}
printf("%lld.%d\n",ans>>1,ans&1?5:0); return 0;
}

BZOJ.1132.[POI2008]Tro(极角排序)的更多相关文章

  1. BZOJ 1132 [POI2008]Tro(极角排序)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1132 [题目大意] 平面上有N个点. 求出所有以这N个点为顶点的三角形的面积和(N&l ...

  2. bzoj 1132 POI2008 Tro

    大水题=_=,可我想复杂了…… 很裸的暴力,就是加了个小优化…… 叉积求面积 :abs(xi*yj - yi*xj) 所以去掉绝对值,把 xi 和 xj 提出来就可以求和了 去绝对值加个极角排序,每次 ...

  3. bzoj 1132 [POI2008]Tro 几何

    [POI2008]Tro Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 1796  Solved: 604[Submit][Status][Discu ...

  4. bzoj 1132: [POI2008]Tro 计算几何

    题目大意: 平面上有N个点. 求出所有以这N个点为顶点的三角形的面积和 N<=3000 题解 我们看到了n的范围,于是我们就知道这一定不是一个线性算法 所以我们尝试枚举三角形的一个点,那么我们现 ...

  5. 【刷题】BZOJ 1132 [POI2008]Tro

    Description 平面上有N个点. 求出所有以这N个点为顶点的三角形的面积和 N<=3000 Input 第一行给出数字N,N在[3,3000] 下面N行给出N个点的坐标,其值在[0,10 ...

  6. 【BZOJ】1132: [POI2008]Tro

    题意 给\(n(1 \le n \le 3000)\)个点,求所有三角形的面积和. 分析 首先枚举一个点,发现把其它点按照关于这个点的极角排序后第\(i\)个点关于前面\(1\)到\(i-1\)的点组 ...

  7. BZOJ1132: [POI2008]Tro(叉积 排序)

    题意 世上最良心题目描述qwq 平面上有N个点. 求出所有以这N个点为顶点的三角形的面积和 N<=3000 Sol 直接模拟是$n^3$的. 考虑先枚举一个$i$,那么我们要算的就是$\sum_ ...

  8. BZOJ1132: [POI2008]Tro

    1132: [POI2008]Tro Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 815  Solved: 211[Submit][Status] ...

  9. bzoj1132[POI2008]Tro 计算几何

    1132: [POI2008]Tro Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 1722  Solved: 575[Submit][Status] ...

随机推荐

  1. tensorflow(2):神经网络优化(loss,learning_rate)

    案例: 预测酸奶的日销量, 由此可以准备产量, 使得损失小(利润大),假设销量是y , 影响销量的有两个因素x1, x2, 需要预先采集数据,每日的x1,x2和销量y_, 拟造数据集X,Y_, 假设y ...

  2. Nginx详解八:Nginx基础篇之Nginx请求限制的配置语法与原理

    Nginx的请求限制: 连接频率的限制:limit_conn_module 配置语法:limit_conn_zone key zone=name:size;默认状态:-配置方法:http 配置语法:l ...

  3. Android定位元素与操作

    一.常用识别元素的工具 uiautomator:Android SDK自带的一个工具,在tools目录下 monitor:Android SDK自带的一个工具,在tools目录下 Appium Ins ...

  4. Python语音识别(计算器)

    第一步关于导入模块的事,我试了好几个方法才发现在好像win7系统没有语音识别功能,我用了win10的又需要重新下载一个包 这样子,win32com.client模块就可以使用了 import win3 ...

  5. 20165206 实验一 Java开发环境的熟悉

    20165206 实验一 Java开发环境的熟悉 一.实验内容及步骤 实验一 Java开发环境的熟悉-1 建立有自己学号的实验目录. 通过vim Hello.java编辑代码. 编译.运行Hello. ...

  6. Kettle Spoon入门教程

    Kettle是一款国外开源的ETL工具,纯java编写,可以在Window.Linux.Unix上运行,数据抽取高效稳定.其中,Spoon是Kettle中的一个组件,其他组件有PAN,CHEF,Enc ...

  7. 关于文件I/o的原子操作

    [摘自<Linux/Unix系统编程手册>] 所有系统调用都是以原子操作方式执行的.这里是指内核保证了某系统调用中的所有步骤会作为独立操作而一次性执行,其间不会为其它进程或线程所中断. 原 ...

  8. Android抓包方法(转)

    Android抓包方法(转) 作者:Findyou 地址:http://www.cnblogs.com/findyou/p/3491014.html 前言: 做前端测试,基本要求会抓包,会分析请求数据 ...

  9. C# 之 @ Assembly

    @ Assembly指定需要动态编译的类,在编译期间将程序集链接到 ASP.NET 应用程序页(例如网页.用户控件.母版页或 Global.asax 文件),使程序集的所有类和接口都在该页上可用. & ...

  10. python基础——高级特性

    1.切片  切片: >>> L = ['Michael', 'Sarah', 'Tracy', 'Bob', 'Jack'] >>> L[:3] ['Michael ...