主要内容:

什么是调度

调度实现原理

Linux上调度实现的方法

调度相关的系统调用

  1. 什么是调度

现在的操作系统都是多任务的,为了能让更多的任务能同时在系统上更好的运行,需要一个管理程序来管理计算机上同时运行的各个任务(也就是进程)。

这个管理程序就是调度程序,它的功能说起来很简单:

决定哪些进程运行,哪些进程等待

决定每个进程运行多长时间

此外,为了获得更好的用户体验,运行中的进程还可以立即被其他更紧急的进程打断。

总之,调度是一个平衡的过程。一方面,它要保证各个运行的进程能够最大限度的使用CPU(即尽量少的切换进程,进程切换过多,CPU的时间会浪费在切换上);另一方面,保证各个进程能公平的使用CPU(即防止一个进程长时间独占CPU的情况)。

  1. 调度实现原理

前面说过,调度功能就是决定哪个进程运行以及进程运行多长时间。

决定哪个进程运行以及运行多长时间都和进程的优先级有关。为了确定一个进程到底能持续运行多长时间,调度中还引入了时间片的概念。

2.1 关于进程的优先级

进程的优先级有2种度量方法,一种是nice值,一种是实时优先级。

nice值的范围是-20~+19,值越大优先级越低,也就是说nice值为-20的进程优先级最大。

实时优先级的范围是0~99,与nice值的定义相反,实时优先级是值越大优先级越高。

实时进程都是一些对响应时间要求比较高的进程,因此系统中有实时优先级高的进程处于运行队列的话,它们会抢占一般的进程的运行时间。

进程的2种优先级会让人不好理解,到底哪个优先级更优先?一个进程同时有2种优先级怎么办?

其实linux的内核早就有了解决办法。

对于第一个问题,到底哪个优先级更优先?

答案是实时优先级高于nice值,在内核中,实时优先级的范围是 0~MAX_RT_PRIO-1 MAX_RT_PRIO的定义参见 include/linux/sched.h

1611 #define MAX_USER_RT_PRIO 100

1612 #define MAX_RT_PRIO MAX_USER_RT_PRIO

nice值在内核中的范围是 MAX_RT_PRIO~MAX_RT_PRIO+40 即 MAX_RT_PRIO~MAX_PRIO

1614 #define MAX_PRIO (MAX_RT_PRIO + 40)

第二个问题,一个进程同时有2种优先级怎么办?

答案很简单,就是一个进程不可能有2个优先级。一个进程有了实时优先级就没有Nice值,有了Nice值就没有实时优先级。

我们可以通过以下命令查看进程的实时优先级和Nice值:(其中RTPRIO是实时优先级,NI是Nice值)

$ ps -eo state,uid,pid,ppid,rtprio,ni,time,comm

S UID PID PPID RTPRIO NI TIME COMMAND

S 0 1 0 - 0 00:00:00 systemd

S 0 2 0 - 0 00:00:00 kthreadd

S 0 3 2 - 0 00:00:00 ksoftirqd/0

S 0 6 2 99 - 00:00:00 migration/0

S 0 7 2 99 - 00:00:00 watchdog/0

S 0 8 2 99 - 00:00:00 migration/1

S 0 10 2 - 0 00:00:00 ksoftirqd/1

S 0 12 2 99 - 00:00:00 watchdog/1

S 0 13 2 99 - 00:00:00 migration/2

S 0 15 2 - 0 00:00:00 ksoftirqd/2

S 0 16 2 99 - 00:00:00 watchdog/2

S 0 17 2 99 - 00:00:00 migration/3

S 0 19 2 - 0 00:00:00 ksoftirqd/3

S 0 20 2 99 - 00:00:00 watchdog/3

S 0 21 2 - -20 00:00:00 cpuset

S 0 22 2 - -20 00:00:00 khelper

2.2 关于时间片

有了优先级,可以决定谁先运行了。但是对于调度程序来说,并不是运行一次就结束了,还必须知道间隔多久进行下次调度。

于是就有了时间片的概念。时间片是一个数值,表示一个进程被抢占前能持续运行的时间。

也可以认为是进程在下次调度发生前运行的时间(除非进程主动放弃CPU,或者有实时进程来抢占CPU)。

时间片的大小设置并不简单,设大了,系统响应变慢(调度周期长);设小了,进程频繁切换带来的处理器消耗。默认的时间片一般是10ms

2.3 调度实现原理(基于优先级和时间片)

下面举个直观的例子来说明:

假设系统中只有3个进程ProcessA(NI=+10),ProcessB(NI=0),ProcessC(NI=-10),NI表示进程的nice值,时间片=10ms

  1. 调度前,把进程优先级按一定的权重映射成时间片(这里假设优先级高一级相当于多5msCPU时间)。

    假设ProcessA分配了一个时间片10ms,那么ProcessB的优先级比ProcessA高10(nice值越小优先级越高),ProcessB应该分配105+10=60ms,以此类推,ProcessC分配205+10=110ms

  2. 开始调度时,优先调度分配CPU时间多的进程。由于ProcessA(10ms),ProcessB(60ms),ProcessC(110ms)。显然先调度ProcessC

  3. 10ms(一个时间片)后,再次调度时,ProcessA(10ms),ProcessB(60ms),ProcessC(100ms)。ProcessC刚运行了10ms,所以变成100ms。此时仍然先调度ProcessC

  4. 再调度4次后(4个时间片),ProcessA(10ms),ProcessB(60ms),ProcessC(60ms)。此时ProcessB和ProcessC的CPU时间一样,这时得看ProcessB和ProcessC谁在CPU运行队列的前面,假设ProcessB在前面,则调度ProcessB

  5. 10ms(一个时间片)后,ProcessA(10ms),ProcessB(50ms),ProcessC(60ms)。再次调度ProcessC

  6. ProcessB和ProcessC交替运行,直至ProcessA(10ms),ProcessB(10ms),ProcessC(10ms)。

    这时得看ProcessA,ProcessB,ProcessC谁在CPU运行队列的前面就先调度谁。这里假设调度ProcessA

  7. 10ms(一个时间片)后,ProcessA(时间片用完后退出),ProcessB(10ms),ProcessC(10ms)。

  8. 再过2个时间片,ProcessB和ProcessC也运行完退出。

这个例子很简单,主要是为了说明调度的原理,实际的调度算法虽然不会这么简单,但是基本的实现原理也是类似的:

1)确定每个进程能占用多少CPU时间(这里确定CPU时间的算法有很多,根据不同的需求会不一样)

2)占用CPU时间多的先运行

3)运行完后,扣除运行进程的CPU时间,再回到 1)

  1. Linux上调度实现的方法

Linux上的调度算法是不断发展的,在2.6.23内核以后,采用了“完全公平调度算法”,简称CFS。

CFS算法在分配每个进程的CPU时间时,不是分配给它们一个绝对的CPU时间,而是根据进程的优先级分配给它们一个占用CPU时间的百分比。

比如ProcessA(NI=1),ProcessB(NI=3),ProcessC(NI=6),在CFS算法中,分别占用CPU的百分比为:ProcessA(10%),ProcessB(30%),ProcessC(60%)

因为总共是100%,ProcessB的优先级是ProcessA的3倍,ProcessC的优先级是ProcessA的6倍。

Linux上的CFS算法主要有以下步骤:(还是以ProcessA(10%),ProcessB(30%),ProcessC(60%)为例)

1)计算每个进程的vruntime(注1),通过update_curr()函数更新进程的vruntime。

2)选择具有最小vruntime的进程投入运行。(注2)

3)进程运行完后,更新进程的vruntime,转入步骤2) (注3)

注1. 这里的vruntime是进程虚拟运行的时间的总和。vruntime定义在:kernel/sched_fair.c 文件的 struct sched_entity 中。

注2. 这里有点不好理解,根据vruntime来选择要运行的进程,似乎和每个进程所占的CPU时间百分比没有关系了。

1)比如先运行ProcessC,(vr是vruntime的缩写),则10ms后:ProcessA(vr=0),ProcessB(vr=0),ProcessC(vr=10)

2)那么下次调度只能运行ProcessA或者ProcessB。(因为会选择具有最小vruntime的进程)

长时间来看的话,ProcessA、ProcessB、ProcessC是公平的交替运行的,和优先级没有关系。

而实际上vruntime并不是实际的运行时间,它是实际运行时间进行加权运算后的结果。

比如上面3个进程中ProcessA(10%)只分配了CPU总的处理时间的10%,那么ProcessA运行10ms的话,它的vruntime会增加100ms。

以此类推,ProcessB运行10ms的话,它的vruntime会增加(100/3)ms,ProcessC运行10ms的话,它的vruntime会增加(100/6)ms。

实际的运行时,由于ProcessC的vruntime增加的最慢,所以它会获得最多的CPU处理时间。

上面的加权算法是我自己为了理解方便简化的,Linux对vruntime的加权方法还得去看源码-

注3.Linux为了能快速的找到具有最小vruntime,将所有的进程的存储在一个红黑树中。这样树的最左边的叶子节点就是具有最小vruntime的进程,新的进程加入或有旧的进程退出时都会更新这棵树。

其实Linux上的调度器是以模块方式提供的,每个调度器有不同的优先级,所以可以同时存在多种调度算法。

每个进程可以选择自己的调度器,Linux调度时,首先按调度器的优先级选择一个调度器,再选择这个调度器下的进程。

  1. 调度相关的系统调用

调度相关的系统调用主要有2类:

  1. 与调度策略和进程优先级相关 (就是上面的提到的各种参数,优先级,时间片等等) - 下表中的前8个

  2. 与处理器相关 - 下表中的最后3个

系统调用

描述

nice()

设置进程的nice值

sched_setscheduler()

设置进程的调度策略,即设置进程采取何种调度算法

sched_getscheduler()

获取进程的调度算法

sched_setparam()

设置进程的实时优先级

sched_getparam()

获取进程的实时优先级

sched_get_priority_max()

获取实时优先级的最大值,由于用户权限的问题,非root用户并不能设置实时优先级为99

sched_get_priority_min()

获取实时优先级的最小值,理由与上面类似

sched_rr_get_interval()

获取进程的时间片

sched_setaffinity()

设置进程的处理亲和力,其实就是保存在task_struct中的cpu_allowed这个掩码标志。该掩码的每一位对应一个系统中可用的处理器,默认所有位都被设置,即该进程可以再系统中所有处理器上执行。

用户可以通过此函数设置不同的掩码,使得进程只能在系统中某一个或某几个处理器上运行。

sched_getaffinity()

获取进程的处理亲和力

sched_yield()

暂时让出处理器

Linux内核读书笔记第六周的更多相关文章

  1. Linux内核读书笔记第三周 调试

    内核调试的难点在于它不能像用户态程序调试那样打断点,随时暂停查看各个变量的状态. 也不能像用户态程序那样崩溃后迅速的重启,恢复初始状态. 用户态程序和内核交互,用户态程序的各种状态,错误等可以由内核来 ...

  2. Linux内核读书笔记第五周链接

    1.临界区(critical regions)就是访问和操作共享数据的代码段.多个执行线程并发访问同一个资源通常是不安全的,为了避免在临界区中并发访问,编程者必须保证这些代码 原子地执行.也就是说,代 ...

  3. 《Linux内核分析》第六周学习笔记

    <Linux内核分析>第六周学习笔记 进程的描述和创建 郭垚 原创作品转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com/co ...

  4. 《Linux内核分析》第六周学习总结

    <Linux内核分析>第六周学习总结                         ——进程的描述和进程的创建 姓名:王玮怡  学号:20135116 一.理论部分 (一)进程的描述 1 ...

  5. 《Linux内核分析》 第六周

    <Linux内核分析> 第6周 一.进程的描述 1.进程控制块PCB 2.linux下的进程转化图 TASK_RUNNING可以是就绪态或者执行态,具体取决于系统调用 TASK_ZOMBI ...

  6. 《Linux内核分析》第六周 读书笔记

    <Linux内核设计与实现>CHAPTER3阅读梳理 [学习时间:3hours] [学习内容:进程的描述:进程的生命周期(包括创建.终结)] 一.进程(任务)描述 1.进程是处于执行期的程 ...

  7. Linux内核读书笔记第二周

    什么是系统调用 简单来说,系统调用就是用户程序和硬件设备之间的桥梁.用户程序在需要的时候,通过系统调用来使用硬件设备. 系统调用的存在,有以下重要的意义: 1)用户程序通过系统调用来使用硬件,而不用关 ...

  8. 20135316Linux内核学习笔记第六周

    20135316王剑桥<Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC 1000029000 一.进程控制块PCB--task_ ...

  9. 《Linux内核分析》第六周 进程的描述与创建

    [刘蔚然 原创作品转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000] WEEK SIX(3 ...

随机推荐

  1. git 一些基本的命令操作总结

    配置远程仓库:git remote add test http://xxxx/tool/device_management.git test为远程仓库别名克隆远程仓库到本地:git clone htt ...

  2. 解决LINUX 只读文件系统的问题

    mount -o rw,remount /dev/mapper/vg_nips-lv_root /

  3. 菜鸟水平如何在Android Studio中添加uiautomator测试框架

    1.启动AS,弹出创建Android Studio项目 2.选择 "Start a new Android Studio project",输入 application name ...

  4. JavaScipt中的Math.ceil() 、Math.floor() 、Math.round()、Math.pow() 三个函数的理解

    以前一直会三个函数的使用产生混淆,现在通过对三个函数的原型定义的理解,其实很容易记住三个函数. 现在做一个总结: 1. Math.ceil()用作向上取整. 2. Math.floor()用作向下取整 ...

  5. 使用POI读写Word doc文件

    使用POI读写word doc文件 目录 1     读word doc文件 1.1     通过WordExtractor读文件 1.2     通过HWPFDocument读文件 2     写w ...

  6. GUI概述与Frame演示

    java 图形化界面的对象存在这两个包中: java.awt :Abstract WindowsToolkit(抽象窗口工具包)需要调用本地系统方法实现功能,属重量级控件 javax.swing:在a ...

  7. luogu P5151 HKE与他的小朋友

    嘟嘟嘟 看到\(i\)变成了\(A_i\),我突然想起了置换这个东西.于是马上到网上学了一遍轮换乘法. 手模后发现轮换乘法满足结合律,但不满足交换律. 于是就可以快速幂啦. 需要注意的是每一次相乘是\ ...

  8. Actor模型和CSP模型的区别

    引用至:http://www.jdon.com/concurrent/actor-csp.html Akka/Erlang的actor模型与Go语言的协程Goroutine与通道Channel代表的C ...

  9. ceph部署实践(mimic版本)

    一.准备环境 4台adminos7.4 环境,存储节点上两块磁盘(sda操作系统,sdb数据盘) clientadmin storage1storage2storage3 二.配置环境 1.修改主机名 ...

  10. leetcode 20. Valid Parentheses 、32. Longest Valid Parentheses 、

    20. Valid Parentheses 错误解法: "[])"就会报错,没考虑到出现')'.']'.'}'时,stack为空的情况,这种情况也无法匹配 class Soluti ...