[模板][P4782]2-SAT
Description:
有n个布尔变量\(x_1\)~\(x_n\),另有m个需要满足的条件,每个条件的形式都是“\(x_i\)为true/false或\(x_j\)为true/false”。比如“\(x_1\)为真或\(x_3\)为假”、“\(x_7\)为假或\(x_2\)为假”。2-SAT 问题的目标是给每个变量赋值使得所有条件得到满足。
Hint:
\(1\le n,m\le 10^6\)
Solution:
模板题,详见代码
#include <algorithm>
#include <cmath>
#include <stack>
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;
const int mxn=2e6+5;
int n,m,tot,cnt,col;
int hd[mxn],bl[mxn],dfn[mxn],low[mxn],ins[mxn];
stack<int > st;
struct ed {
int to,nxt;
}t[mxn<<1];
inline void chkmax(int &x,int y) {if(x<y) x=y;}
inline void chkmin(int &x,int y) {if(x>y) x=y;}
inline void add(int u,int v) {
t[++cnt]=(ed) {v,hd[u]}; hd[u]=cnt;
}
void tj(int u)
{
dfn[u]=low[u]=++tot; st.push(u); ins[u]=1;
for(int i=hd[u];i;i=t[i].nxt) {
int v=t[i].to;
if(!dfn[v]) tj(v),chkmin(low[u],low[v]);
else if(ins[v]) chkmin(low[u],dfn[v]);
}
if(dfn[u]==low[u]) {
++col;
do{
bl[u]=col; u=st.top();
st.pop(); ins[u]=0;
} while(low[u]!=dfn[u]);
}
} //tarjan基本操作,没什么好说的
int main()
{
scanf("%d%d",&n,&m); int u,v,x,y;
for(int i=1;i<=m;++i) {
scanf("%d%d%d%d",&u,&x,&v,&y);
add(u+n*(x^1),v+n*y);
add(v+n*(y^1),u+n*x); //建边,很好懂的
}
for(int i=1;i<=2*n;++i)
if(!dfn[i]) tj(i);
for(int i=1;i<=n;++i)
if(bl[i]==bl[i+n]) {
puts("IMPOSSIBLE");
return 0;
}
puts("POSSIBLE");
for(int i=1;i<=n;++i)
printf("%d ",bl[i]>bl[i+n]); //按较大拓扑序输出答案
return 0;
}
[模板][P4782]2-SAT的更多相关文章
- P4782 【模板】2-SAT 问题 && 2-SAT问题
2-SAT到图论 \(k-SAT\) 是 k-适应性问题(Satisfiability)的简称. \(k-SAT\) 问题(除 \(k = 2\))已被证明为是 \(NP\) 完全问题, 而对于 \( ...
- 洛谷P4782 【模板】2-SAT问题 [2-SAT]
题目传送门 [模板]2-SAT问题 题目背景 2-SAT 问题 模板 题目描述 有n个布尔变量 $x_1/~x_n$ ,另有$m$个需要满足的条件,每个条件的形式都是“ $x_i$ 为$true/f ...
- 2 - sat 模板(自用)
2-sat一个变量两种状态符合条件的状态建边找强连通,两两成立1 - n 为第一状态(n + 1) - (n + n) 为第二状态 例题模板 链接一 POJ 3207 Ikki's Story IV ...
- Luogu P4782 【模板】2-SAT 问题(2-SAT)
P4782 [模板]2-SAT 问题 题意 题目背景 \(2-SAT\)问题模板 题目描述 有\(n\)个布尔变量\(x_1\sim x_n\),另有\(m\)个需要满足的条件,每个条件的形式都是&q ...
- P4782 【模板】2-SAT 问题
https://www.luogu.org/problemnew/show/P4782 链接 https://www.luogu.org/problemnew/show/P4782 思路 选a就必须选 ...
- 【刷题】洛谷 P4782 【模板】2-SAT 问题
题目背景 2-SAT 问题 模板 题目描述 有n个布尔变量 \(x_1\)~\(x_n\),另有m个需要满足的条件,每个条件的形式都是"\(x_i\)为true/false或\(x_j ...
- 2-SAT问题介绍求解 + 模板题P4782
(点击此处查看原题) 什么是2-SAT问题 sat 即 Satisfiability,意思为可满足,那么2-SAT表示一些布尔变量只能取true或者false,而某两个变量之间的值存在一定的关系(如: ...
- [洛谷P4782]【模板】2-SAT 问题
题目大意:有$n$个布尔变量 $x_1 \sim x_n$,另有$m$个需要满足的条件,每个条件的形式都是"$x_i$ 为$true/false$或$x_j$为$true/false$&qu ...
- [洛谷P4782] [模板] 2-SAT 问题
NOIp后第一篇题解. NOIp我考的很凉啊...... 题目传送门 之前讲过怎么判断2-SAT是否存在解. 至于如何构造一组解: 我们想到对tarjan缩点后的图进行拓扑排序. 那么对于代表0状态的 ...
随机推荐
- OOP和面向对象
OOP具有三大特点 1.封装性:也称为信息隐藏,就是将一个类的使用和实现分开,只保留部分接口和方法与外部联系,或者说只公开了一些供开发人员使用的方法.于是开发人员只 需要关注这个类如何使用,而不用去关 ...
- ios线程和GCD和队列同步异步的关系
1.什么是进程? 进程是指在系统中正在运行的一个应用程序.比如同时打开QQ.Xcode,系统就会分别启动2个进程.截图 2.什么是线程? 1).一个进程要想执行任务,必须得有线程(每一个进程至少要有一 ...
- 【Android】Android 中string-array的用法
在Android中,用string-array是一种简单的提取XML资源文件数据的方法. 例子如下: 把相应的数据放到values文件夹的arrays.xml文件里 <?xml version= ...
- 将input或textarea设置为disabled的样式问题
input:disabled{ -webkit-text-fill-color: #333;//是用来做填充色使用的 -webkit-opacity: 1; color: #333; } textar ...
- 2018牛客网暑假ACM多校训练赛(第三场)I Expected Size of Random Convex Hull 计算几何,凸包,其他
原文链接https://www.cnblogs.com/zhouzhendong/p/NowCoder-2018-Summer-Round3-I.html 题目传送门 - 2018牛客多校赛第三场 I ...
- 041 Spring Boot中排除功能的处理
这个问题,原本是没有注意,主要是理解的不够深刻. 1.先看我的配置文件 package com.springBoot.ioc.config; import com.springBoot.ioc.con ...
- 使用soupUI做接口测试
第一步:点击“file”,选择测试项目采用的协议:(这里我们测试的是http协议的,所以选择第三项) 第二步:在弹窗中输入测试项目的接口URL,并点击“OK”: 第三步:设置和填写请求项的内容并点 ...
- day7 [id],[is],编码
老师的笔记: 字典:dic = {'name':'alex'} 1,增 dic['k'] = 'v' 有键值对,则覆盖 setdefault 有键值对,不添加 dic.setdefault('k1', ...
- exporter API(导出、输出器api)moodel3.3
Moodle[导出器]是接收数据并将其序列化为一个简单的预定义结构的类.它们确保输出的数据格式统一,易于维护.它们也用于生成外部函数的签名(参数和返回值) 外部函数定义在moodle/lib/exte ...
- linux 更新yum源 改成阿里云源
1.备份 mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo.backup 2.下载新的CentOS-Base ...