python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)

https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share

sklearnmulticlass与multilabel,one-vs-rest与one-vs-one

针对多类问题的分类中,具体讲有两种,即multiclass classification和multilabel classification。multiclass是指分类任务中包含不止一个类别时,每条数据仅仅对应其中一个类别,不会对应多个类别。multilabel是指分类任务中不止一个分类时,每条数据可能对应不止一个类别标签,例如一条新闻,可以被划分到多个板块。

无论是multiclass,还是multilabel,做分类时都有两种策略,一个是one-vs-​the-rest(one-vs-all),一个是one-vs-one。这个在之前的SVM介绍中(http://blog.sina.com.cn/s/blog_7103b28a0102w07f.html)也提到过。

在one-vs-all策略中,假设有n个类别,那么就会建立n个二项分类器,每个分类器针对其中一个类别和剩余类别进行分类。进行预测时,利用这n个二项分类器进行分类,得到数据属于当前类的概率,选择其中概率最大的一个类别作为最终的预测结果。

在one-vs-one策略中,同样假设有n个类别,则会针对两两类别建立二项分类器,得到k=n*(n-1)/2个分类器。对新数据进行分类时,依次使用这k个分类器进行分类,每次分类相当于一次投票,分类结果是哪个就相当于对哪个类投了一票。在使用全部k个分类器进行分类后,相当于进行了k次投票,选择得票最多的那个类作为最终分类结果​。

​在scikit-learn框架中,分别有sklearn.multiclass.OneVsRestClassifier和sklearn.multiclass.OneVsOneClassifier完成两种策略,使用过程中要指明使用的二项分类器是什么。另外在进行mutillabel分类时,训练数据的类别标签Y应该是一个矩阵,第[i,j]个元素指明了第j个类别标签是否出现在第i个样本数据中。例如,np.array([[1, 0, 0], [0, 1, 1], [0, 0, 0]]),这样的一条数据,指明针对第一条样本数据,类别标签是第0个类,第二条数据,类别标签是第1,第2个类,第三条数据,没有类别标签。有时训练数据中,类别标签Y可能不是这样的可是,而是类似[[2, 3, 4], [2], [0, 1, 3], [0, 1, 2, 3, 4], [0, 1, 2]]这样的格式,每条数据指明了每条样本数据对应的类标号。这就需要将Y转换成矩阵的形式,sklearn.preprocessing.MultiLabelBinarizer提供了这个功能。

​ons-vs-all的multiclass例子如下:

​one-vs-one的multiclass例子如下:

https://www.cnblogs.com/taceywong/p/5932682.html

本例模拟一个多标签文档分类问题.数据集基于下面的处理随机生成:

  • 选取标签的数目:泊松(n~Poisson,n_labels)
  • n次,选取类别C:多项式(c~Multinomial,theta)
  • 选取文档长度:泊松(k~Poisson,length)
  • k次,选取一个单词:多项式(w~Multinomial,theta_c)

在上面的处理中,拒绝抽样用来确保n大于2,文档长度不为0.同样,我们拒绝已经被选取的类别.被同事分配给两个分类的文档会被两个圆环包围.

通过投影到由PCA和CCA选取进行可视化的前两个主成分进行分类.接着通过元分类器使用两个线性核的SVC来为每个分类学习一个判别模型.注意,PCA用于无监督降维,CCA用于有监督.

注:在下面的绘制中,"无标签样例"不是说我们不知道标签(就像半监督学习中的那样),而是这些样例根本没有标签~~~

# coding:utf-8

import numpy as np
from pylab import * from sklearn.datasets import make_multilabel_classification
from sklearn.multiclass import OneVsRestClassifier
from sklearn.svm import SVC
from sklearn.preprocessing import LabelBinarizer
from sklearn.decomposition import PCA
from sklearn.cross_decomposition import CCA myfont = matplotlib.font_manager.FontProperties(fname="Microsoft-Yahei-UI-Light.ttc")
mpl.rcParams['axes.unicode_minus'] = False def plot_hyperplane(clf, min_x, max_x, linestyle, label):
# 获得分割超平面
w = clf.coef_[0]
a = -w[0] / w[1]
xx = np.linspace(min_x - 5, max_x + 5) # 确保线足够长
yy = a * xx - (clf.intercept_[0]) / w[1]
plt.plot(xx, yy, linestyle, label=label) def plot_subfigure(X, Y, subplot, title, transform):
if transform == "pca":
X = PCA(n_components=2).fit_transform(X)
elif transform == "cca":
X = CCA(n_components=2).fit(X, Y).transform(X)
else:
raise ValueError min_x = np.min(X[:, 0])
max_x = np.max(X[:, 0]) min_y = np.min(X[:, 1])
max_y = np.max(X[:, 1]) classif = OneVsRestClassifier(SVC(kernel='linear'))
classif.fit(X, Y) plt.subplot(2, 2, subplot)
plt.title(title,fontproperties=myfont) zero_class = np.where(Y[:, 0])
one_class = np.where(Y[:, 1])
plt.scatter(X[:, 0], X[:, 1], s=40, c='gray')
plt.scatter(X[zero_class, 0], X[zero_class, 1], s=160, edgecolors='b',
facecolors='none', linewidths=2, label=u'类别-1')
plt.scatter(X[one_class, 0], X[one_class, 1], s=80, edgecolors='orange',
facecolors='none', linewidths=2, label=u'类别-2') plot_hyperplane(classif.estimators_[0], min_x, max_x, 'k--',
u'类别-1的\n边界')
plot_hyperplane(classif.estimators_[1], min_x, max_x, 'k-.',
u'类别-2的\n边界')
plt.xticks(())
plt.yticks(()) plt.xlim(min_x - .5 * max_x, max_x + .5 * max_x)
plt.ylim(min_y - .5 * max_y, max_y + .5 * max_y)
if subplot == 2:
plt.xlabel(u'第一主成分',fontproperties=myfont)
plt.ylabel(u'第二主成分',fontproperties=myfont)
plt.legend(loc="upper left",prop=myfont) plt.figure(figsize=(8, 6)) X, Y = make_multilabel_classification(n_classes=2, n_labels=1,
allow_unlabeled=True,
random_state=1) plot_subfigure(X, Y, 1, u"有无标签样例 + CCA", "cca")
plot_subfigure(X, Y, 2, u"有无标签样例 + PCA", "pca") X, Y = make_multilabel_classification(n_classes=2, n_labels=1,
allow_unlabeled=False,
random_state=1) plot_subfigure(X, Y, 3, u"没有无标签样例 + CCA", "cca")
plot_subfigure(X, Y, 4, u"没有无标签样例 + PCA", "pca") plt.subplots_adjust(.04, .02, .97, .94, .09, .2)
plt.suptitle(u"多标签分类", size=20,fontproperties=myfont)
plt.show()

https://www.cnblogs.com/hapjin/p/6085278.html

# logistics 多分类

import pandas as pd
df=pd.read_csv("logistic_data/train.tsv",header=0,delimiter='\t')
print df.count()
print df.head()
df.Phrase.head(10)
df.Sentiment.describe()
df.Sentiment.value_counts()
df.Sentiment.value_counts()/df.Sentiment.count()
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model.logistic import LogisticRegression
from sklearn.cross_validation import train_test_split
from sklearn.metrics import classification_report,accuracy_score,confusion_matrix
from sklearn.pipeline import Pipeline
from sklearn.grid_search import GridSearchCV pipeline=Pipeline([
('vect',TfidfVectorizer(stop_words='english')),
('clf',LogisticRegression())])
parameters={
'vect__max_df':(0.25,0.5),
'vect__ngram_range':((1,1),(1,2)),
'vect__use_idf':(True,False),
'clf__C':(0.1,1,10),
}
df=pd.read_csv("logistic_data/train.tsv",header=0,delimiter='\t')
X,y=df.Phrase,df.Sentiment.as_matrix()
X_train,X_test,y_train,y_test=train_test_split(X,y,train_size=0.5)
grid_search=GridSearchCV(pipeline,parameters,n_jobs=-1,verbose=1,scoring="accuracy")
grid_search.fit(X_train,y_train)
print u'最佳效果:%0.3f'%grid_search.best_score_
print u'最优参数组合:'
best_parameters=grid_search.best_estimator_.get_params()
for param_name in sorted(parameters.keys()):
print '\t%s:%r'%(param_name,best_parameters[param_name])

数据结果:

Fitting 3 folds for each of 24 candidates, totalling 72 fits
 [Parallel(n_jobs=-1)]: Done 46 tasks | elapsed: 2.0min [Parallel(n_jobs=-1)]: Done 72 out of 72 | elapsed: 4.5min finished
 最佳效果:0.619 最优参数组合: clf__C:10 vect__max_df:0.25 vect__ngram_range:(1, 2) vect__use_idf:False

 ## 多类分类效果评估

predictions=grid_search.predict(X_test)
print u'准确率',accuracy_score(y_test,predictions)
print u'混淆矩阵',confusion_matrix(y_test,predictions)
print u'分类报告',classification_report(y_test,predictions)

数据结果:

准确率 0.636614122773
混淆矩阵 [[ 1133  1712   595    67     1]
[  919  6136  6006   553    35]
[  213  3212 32637  3634   138]
[   22   420  6548  8155  1274]
[    4    45   546  2411  1614]]
分类报告              precision    recall  f1-score   support

0       0.49      0.32      0.39      3508
          1       0.53      0.45      0.49     13649
          2       0.70      0.82      0.76     39834
          3       0.55      0.50      0.52     16419
          4       0.53      0.35      0.42      4620

avg / total       0.62      0.64      0.62     78030

1.11 多分类、多标签分类

包:sklearn.multiclass

  • OneVsRestClassifier:1-rest多分类(多标签)策略
  • OneVsOneClassifier:1-1多分类策略
  • OutputCodeClassifier:1个类用一个二进制码表示
    示例代码
#coding=utf-8
from sklearn import metrics
from sklearn import cross_validation
from sklearn.svm import SVC
from sklearn.multiclass import OneVsRestClassifier
from sklearn.preprocessing import MultiLabelBinarizer
import numpy as np
from numpy import random
X=np.arange(15).reshape(5,3)
y=np.arange(5)
Y_1 = np.arange(5)
random.shuffle(Y_1)
Y_2 = np.arange(5)
random.shuffle(Y_2)
Y = np.c_[Y_1,Y_2]
def multiclassSVM():
X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, y, test_size=0.2,random_state=0)
model = OneVsRestClassifier(SVC())
model.fit(X_train, y_train)
predicted = model.predict(X_test)
print predicted
def multilabelSVM():
Y_enc = MultiLabelBinarizer().fit_transform(Y)
X_train, X_test, Y_train, Y_test = cross_validation.train_test_split(X, Y_enc, test_size=0.2, random_state=0)
model = OneVsRestClassifier(SVC())
model.fit(X_train, Y_train)
predicted = model.predict(X_test)
print predicted
if __name__ == '__main__':
multiclassSVM()
# multilabelSVM()

上面的代码测试了svm在OneVsRestClassifier的包装下,分别处理多分类和多标签的情况。特别注意,在多标签的情况下,输入必须是二值化的。所以需要MultiLabelBinarizer()先处理。

2 具体模型

2.1 朴素贝叶斯(Naive Bayes)

包:sklearn.cross_validation

 
朴素贝叶斯.png

朴素贝叶斯的特点是分类速度快,分类效果不一定是最好的。

  • GasussianNB:高斯分布的朴素贝叶斯
  • MultinomialNB:多项式分布的朴素贝叶斯
  • BernoulliNB:伯努利分布的朴素贝叶斯

所谓使用什么分布的朴素贝叶斯,就是假设P(x_i|y)是符合哪一种分布,比如可以假设其服从高斯分布,然后用最大似然法估计高斯分布的参数。

 
高斯分布.png
 
多项式分布.png
 
伯努利分布.png

3 scikit-learn扩展

3.0 概览

具体的扩展,通常要继承sklearn.base包下的类。

  • BaseEstimator: 估计器的基类
  • ClassifierMixin :分类器的混合类
  • ClusterMixin:聚类器的混合类
  • RegressorMixin :回归器的混合类
  • TransformerMixin :转换器的混合类

关于什么是Mixin(混合类),具体可以看这个知乎链接。简单地理解,就是带有实现方法的接口,可以将其看做是组合模式的一种实现。举个例子,比如说常用的TfidfTransformer,继承了BaseEstimator, TransformerMixin,因此它的基本功能就是单一职责的估计器和转换器的组合。

3.1 创建自己的转换器

在特征抽取的时候,经常会发现自己的一些数据预处理的方法,sklearn里可能没有实现,但若直接在数据上改,又容易将代码弄得混乱,难以重现实验。这个时候最好自己创建一个转换器,在后面将这个转换器放到pipeline里,统一管理。
例如《Python数据挖掘入门与实战》书中的例子,我们想接收一个numpy数组,根据其均值将其离散化,任何高于均值的特征值替换为1,小于或等于均值的替换为0。
代码实现:

from sklearn.base import TransformerMixin
from sklearn.utils import as_float_array class MeanDiscrete(TransformerMixin): #计算出数据集的均值,用内部变量保存该值。
def fit(self, X, y=None):
X = as_float_array(X)
self.mean = np.mean(X, axis=0)
#返回self,确保在转换器中能够进行链式调用(例如调用transformer.fit(X).transform(X))
return self def transform(self, X):
X = as_float_array(X)
assert X.shape[1] == self.mean.shape[0]
return X > self.mean

作者:Cer_ml
链接:https://www.jianshu.com/p/516f009c0875
來源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

sklearn学习笔记(3)svm多分类

http://blog.csdn.net/babybirdtofly/article/details/72886879

SVC、NuSVC、LinearSVC都可以在一个数据集上实现多分类。 
SVC和NuSVC方法类似,但是有不同的输入参数集和不同的数学表述。另一方面,linearSVC是SVC的在线性核的基础上的另一种实现,所以LinearSVC不能不能接受关键字“kernel”,只能是线性。 
二分类 
和别的分类器一样,三种分类器需要输入两个数组:X[n样本][n维特征](训练数据集)Y[n个标签](类标签)

from sklearn import svm
X = [[0,0], [1,1]]
Y = [0, 1]
  • 1
  • 2
  • 3

模型学习之后可以进行预测:

clf = svm.SVC()
clf.fit(X,y)
clf.predict([[2.,2.]])
  • 1
  • 2
  • 3

SVM的决策函数依赖于训练数据集的支持向量子集。这些属性可以通过下面函数进行查看

#get support vector
clf.support_vectors_
#get indices of support vectors
clf.support_
#get number of support vectors for each class
clf.n_support_
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

多分类 
SVC和NuSVC实现“1v1“的方法进行多分类(Knerr et al,1990)。如果n_class是类别的数量,那么需要建立n*n/2个分类器,desision_function_shape选项允许集成“1v1”分类器来刻画(n_samples,n_features

clf = svm.SVC(decision_function_shape='ovo')
clf.fit(X, Y)
dec = clf.decision_function([[1]])
print dec.shape[1] # 4 classes: 4*3/2 = 6
print clf.predict([[1]]) clf.decision_function_shape = "ovr"
dec = clf.decision_function([[1]])
print dec.shape[1]
print clf.predict([[2.4]])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

同时,LinearSVC也实现了“one vs the rest”多分类策略。

lin_clf = svm.LinearSVC()
lin_clf.fit(X,Y)
dec = lin_clf.decision_function([[3]])
print dec.shape[1]
print lin_clf.predict(2.4)
  • 1
  • 2
  • 3
  • 4
  • 5

评分和概率 
SVC方法decision_function给每个样本中的每个类一个评分,当我们将probability设置为True之后,我们可以通过predict_probapredict_log_proba可以对类别概率进行评估。 
Wu, Lin and Weng, “Probability estimates for multi-class classification by pairwise coupling”, JMLR 5:975-1005, 2004. 
不均衡问题 
我们可以通过class_weightsample_weight两个关键字实现对特定类别或者特定样本的权重调整。

本作业使用逻辑回归(logistic regression)和神经网络(neural networks)识别手写的阿拉伯数字(0-9)

关于逻辑回归的一个编程练习,可参考:Stanford coursera Andrew Ng 机器学习课程编程作业(Exercise 2)及总结

下面使用逻辑回归实现多分类问题:识别手写的阿拉伯数字(0-9),使用神经网络实现:识别手写的阿拉伯数字(0-9),请参考:神经网络实现

数据加载到Matlab中的格式如下:

一共有5000个训练样本,每个训练样本是400维的列向量(20X20像素的 grayscale image),用矩阵 X 保存。样本的结果(label of training set)保存在向量 y 中,y 是一个5000行1列的列向量。

比如 y = (1,2,3,4,5,6,7,8,9,10......)T,注意,由于Matlab下标是从1开始的,故用 10 表示数字 0

①样本数据的可视化

随机选择100个样本数据,使用Matlab可视化的结果如下:

②使用逻辑回归来实现多分类问题(one-vs-all)

所谓多分类问题,是指分类的结果为三类以上。比如,预测明天的天气结果为三类:晴(用y==1表示)、阴(用y==2表示)、雨(用y==3表示)

分类的思想,其实与逻辑回归分类(默认是指二分类,binary classification)很相似,对“晴天”进行分类时,将另外两类(阴天和下雨)视为一类:(非晴天),这样,就把一个多分类问题转化成了二分类问题。示意图如下:(图中的圆圈 表示:不属于某一类的 所有其他类)

对于N分类问题(N>=3),就需要N个假设函数(预测模型),也即需要N组模型参数θ(θ一般是一个向量)

然后,对于每个样本实例,依次使用每个模型预测输出,选取输出值最大的那组模型所对应的预测结果作为最终结果。

因为模型的输出值,在sigmoid函数作用下,其实是一个概率值。,注意:hθ(1)(x),hθ(2)(x),hθ(3)(x)三组 模型参数θ 一般是不同的。比如:

hθ(1)(x),输出 预测为晴天(y==1)的概率

hθ(2)(x),输出 预测为阴天(y==2)的概率

hθ(3)(x),输出 预测为雨天(y==3)的概率

③Matlab代码实现

对于上面的识别阿拉伯数字的问题,一共需要训练出10个逻辑回归模型,每个逻辑回归模型对应着识别其中一个数字。

我们一共有5000个样本,样本的预测结果值就是:y=(1,2,3,4,5,6,7,8,9,10),其中 10 代表 数字0

我们使用Matlab fmincg库函数 来求解使得代价函数取最小值的 模型参数θ

function [all_theta] = oneVsAll(X, y, num_labels, lambda)
%ONEVSALL trains multiple logistic regression classifiers and returns all
%the classifiers in a matrix all_theta, where the i-th row of all_theta
%corresponds to the classifier for label i
% [all_theta] = ONEVSALL(X, y, num_labels, lambda) trains num_labels
% logisitc regression classifiers and returns each of these classifiers
% in a matrix all_theta, where the i-th row of all_theta corresponds
% to the classifier for label i % Some useful variables
m = size(X, 1);% num of samples
n = size(X, 2);% num of features % You need to return the following variables correctly
all_theta = zeros(num_labels, n + 1); % Add ones to the X data matrix
X = [ones(m, 1) X]; % ====================== YOUR CODE HERE ======================
% Instructions: You should complete the following code to train num_labels
% logistic regression classifiers with regularization
% parameter lambda.
%
% Hint: theta(:) will return a column vector.
%
% Hint: You can use y == c to obtain a vector of 1's and 0's that tell use
% whether the ground truth is true/false for this class.
%
% Note: For this assignment, we recommend using fmincg to optimize the cost
% function. It is okay to use a for-loop (for c = 1:num_labels) to
% loop over the different classes.
%
% fmincg works similarly to fminunc, but is more efficient when we
% are dealing with large number of parameters.
%
% Example Code for fmincg:
%
% % Set Initial theta
% initial_theta = zeros(n + 1, 1);
%
% % Set options for fminunc
% options = optimset('GradObj', 'on', 'MaxIter', 50);
%
% % Run fmincg to obtain the optimal theta
% % This function will return theta and the cost
% [theta] = ...
% fmincg (@(t)(lrCostFunction(t, X, (y == c), lambda)), ...
% initial_theta, options);
%
initial_theta = zeros(n + 1, 1); options = optimset('GradObj','on','MaxIter',50); for c = 1:num_labels %num_labels 为逻辑回归训练器的个数,num of logistic regression classifiers
all_theta(c, :) = fmincg(@(t)(lrCostFunction(t, X, (y == c),lambda)), initial_theta,options );
end
% =========================================================================
end

lrCostFunction,完全可参考:http://www.cnblogs.com/hapjin/p/6078530.html 里面的 正则化的逻辑回归模型实现costFunctionReg.m文件

下面来解释一下 for循环:

num_labels 为分类器个数,共10个,每个分类器(模型)用来识别10个数字中的某一个。

我们一共有5000个样本,每个样本有400中特征变量,因此:模型参数θ 向量有401个元素。

initial_theta = zeros(n + 1, 1); % 模型参数θ的初始值(n == 400)

all_theta是一个10*401的矩阵,每一行存储着一个分类器(模型)的模型参数θ 向量,执行上面for循环,就调用fmincg库函数 求出了 所有模型的参数θ 向量了。

求出了每个模型的参数向量θ,就可以用 训练好的模型来识别数字了。对于一个给定的数字输入(400个 feature variables) input instance,每个模型的假设函数hθ(i)(x) 输出一个值(i = 1,2,...10)。取这10个值中最大值那个值,作为最终的识别结果。比如g(hθ(8)(x))==0.96 比其它所有的 g(hθ(i)(x)) (i = 1,2,...10,但 i 不等于8) 都大,则识别的结果为 数字 8

function p = predictOneVsAll(all_theta, X)
%PREDICT Predict the label for a trained one-vs-all classifier. The labels
%are in the range 1..K, where K = size(all_theta, 1).
% p = PREDICTONEVSALL(all_theta, X) will return a vector of predictions
% for each example in the matrix X. Note that X contains the examples in
% rows. all_theta is a matrix where the i-th row is a trained logistic
% regression theta vector for the i-th class. You should set p to a vector
% of values from 1..K (e.g., p = [1; 3; 1; 2] predicts classes 1, 3, 1, 2
% for 4 examples) m = size(X, 1);
num_labels = size(all_theta, 1); % You need to return the following variables correctly
p = zeros(size(X, 1), 1); % Add ones to the X data matrix
X = [ones(m, 1) X]; % ====================== YOUR CODE HERE ======================
% Instructions: Complete the following code to make predictions using
% your learned logistic regression parameters (one-vs-all).
% You should set p to a vector of (from 1 to
% num_labels).
%
% Hint: This code can be done all vectorized using the max function.
% In particular, the max function can also return the index of the
% max element, for more information see 'help max'. If your examples
% are in rows, then, you can use max(A, [], 2) to obtain the max
% for each row.
% [~,p] = max( X * all_theta',[],2); % 求矩阵(X*all_theta')每行的最大值,p 记录矩阵每行的最大值的索引
% =========================================================================
end

 https://study.163.com/provider/400000000398149/index.htm?share=2&shareId=400000000398149( 欢迎关注博主主页,学习python视频资源,还有大量免费python经典文章)

 

sklearn多分类问题的更多相关文章

  1. sklearn神经网络分类

    sklearn神经网络分类 神经网络学习能力强大,在数据量足够,隐藏层足够多的情况下,理论上可以拟合出任何方程. 理论部分 sklearn提供的神经网络算法有三个: neural_network.Be ...

  2. [转载]sklearn多分类模型

    [转载]sklearn多分类模型 这篇文章很好地说明了利用sklearn解决多分类问题时的implement层面的内容:https://www.jianshu.com/p/b2c95f13a9ae.我 ...

  3. Sklearn中二分类问题的交叉熵计算

    二分类问题的交叉熵   在二分类问题中,损失函数(loss function)为交叉熵(cross entropy)损失函数.对于样本点(x,y)来说,y是真实的标签,在二分类问题中,其取值只可能为集 ...

  4. SKlearn中分类决策树的重要参数详解

    学习机器学习童鞋们应该都知道决策树是一个非常好用的算法,因为它的运算速度快,准确性高,方便理解,可以处理连续或种类的字段,并且适合高维的数据而被人们喜爱,而Sklearn也是学习Python实现机器学 ...

  5. sklearn调用分类算法的评价指标

    sklearn分类算法的评价指标调用#二分类问题的算法评价指标import numpy as npimport matplotlib.pyplot as pltimport pandas as pdf ...

  6. sklearn解决分类问题(KNN,线性判别函数,二次判别函数,KMeans,MLE,人工神经网络)

    代码:*******************加密中**************************************

  7. sklearn特征选择和分类模型

    sklearn特征选择和分类模型 数据格式: 这里.原始特征的输入文件的格式使用libsvm的格式,即每行是label index1:value1 index2:value2这样的稀疏矩阵的格式. s ...

  8. sklearn 学习 第一篇:分类

    分类属于监督学习算法,是指根据已有的数据和标签(分类)进行学习,预测未知数据的标签.分类问题的目标是预测数据的类别标签(class label),可以把分类问题划分为二分类和多分类问题.二分类是指在两 ...

  9. python - 实现文本分类[简单使用第三方库完成]

    第三方库 pandas sklearn 数据集 来自于达观杯 训练:train.txt 测试:test.txt 概述 TF-IDF 模型提取特征值建立逻辑回归模型 代码 # _*_ coding:ut ...

随机推荐

  1. Python学习笔记——Python Number(数字)

    Python Number 类型转换 int(x, y) #将x转换为一个整数,y为进制数.如 int('11',2)将二进制数的11转成十进制数的整数,结果为3 long(x, y) #将x转换为一 ...

  2. 第三个spring冲刺第4天

    今天,我们在难度选择方面做了谈论,根据难度选择题目的难易和数量,在计时器方面应该有相应的配合,由此决定难易度,因此,我们要做好谈论,为这个难易度做好准备去编译,以免出现混乱.

  3. scipy的一些函数名

    rvs:随机变量pdf:概率密度函数cdf:累计分布函数sf:残存函数(1-CDF)ppf:分位点函数(CDF的逆)isf:逆残存函数(sf的逆)stats:返回均值,方差,(费舍尔)偏态,(费舍尔) ...

  4. 全新OCR3500数据

    改装: 手变6700,夹器彦豪R741,牙盘5700,前拨5700,后拨5701,飞轮5700,链条YBN S10 S2,弯把DEDA RHM01,前叉山寨BIANCHI K-VID,轮组FULCRU ...

  5. js排序方法

    function swap(ary, x, y) { if (x === y) return let temp = ary[x] ary[x] = ary[y] ary[y] = temp } //生 ...

  6. SQLSERVER备份恢复后权限问题简单处理.

    1. 同事的服务器出现无法访问表, 应用连不上数据库... 远程了下 发现. 使用业务用户登录数据库之后查询无法下拉帮助到表, 必须增加schemas才可以访问到具体的表. 2. 问题解决. 1. 修 ...

  7. BOM嵌套简单写法

    WITHTREE AS( SELECT a.FItemID cfitemid,b.FItemID pfitemid FROM dbo.ICBOMChild a,dbo.ICBOM b WHERE a. ...

  8. 关于一个常用的CheckBox样式

    我们在使用CheckBox的时候,原始的样式有时不能满足我们的需求,这是我们就需要更改其模板,比如我们常用的一种,在播放器中“播放”.“暂停”按钮,其实这也是一种CheckBox,只不过我们只是修改了 ...

  9. Mac上brew&thrift安装 以及在thrift架构下,自己新作了maven的小例 Demo

    1.缘由 前几天偶尔在网上看到thrift的信息,其内容和作用极大的引起了我的兴趣,因为我也是做iOS开发的,通过在网上的查询发现信息虽然很多实用的很少,容易误导他人,经过自己的成功实践,做了笔录,为 ...

  10. selenium之封装登陆操作

    # selenium 封装登录操作举例 import os, time # from selenium import webdriver class LoginPage(): '''登录模块''' d ...