Matlab计算的FFT与通过Origin计算的FFT
实验的过程中,经常需要对所采集的数据进行频谱分析,软件的选择对计算速度影响挺大的。我在实验过程中,通常使用Origin7.5来进行快速傅里叶变换,因为方便快捷,计算之后,绘出来的图也容易编辑。但是当数据容量太大,达到100M大小,这时候使用Origin7.5进行快速傅里叶变换,运算速度非常慢,甚至运算不出来。
对大容量的数据进行快速傅里叶变换,我使用Matlab,运算速度比Origin7.5快很多。但是使用Matlab进行FFT时,需要进行一些小的处理,才能使运算结果与使用Origin7.5进行FFT时得到的结果保持一致。
(1)首先介绍运用Origin7.5进行FFT的基本操作,
选中数据后,点击“分析”,下拉菜单中出现“快速傅里叶变换FFT”,点击进入,这个时候会弹出对话框。对话框中,“FFT”下面的“Forward”和“Backward”是正变换和逆变换。“Spectrum”选择“Amplitude”或者选择“Power”,一个是幅度谱,一个是功率谱。其中功率谱是幅度谱的平方。
点击对话中“Settings”按钮,弹出对话框。
其中第四行“Sampling”设置为采样间隔,就是采样率的倒数。第一行的“Sampling”可以不用设置,第二行的“Real”为需要进行傅里叶变换的离散数据,数据一般是实数,故没有虚部,第三行的“Imaginar”不用设置。
“Window Method”一般选择“Rectangular”,
各个窗函数的表示式为:
上述对话框中“Output Options”下面的选项,第一行为是否对FFT之后的幅度进行归一化,这个是要选择归一化的。第二行,表示式单边带,还是双边带,我一般选择单边带。第三行和相位相关。
上述对话框中“Exponential Phase Factor”表示FFT是选择e-jwt还是ejwt,通常FFT算法是前者。
上述这是完之后,就可以得到FFT之后的结果。
关于Origin进行FFT原理,可以参考网页:
(2)其次介绍运用Matlab进行FFT的基本操作,
在使用Matlab进行FFT时,首先要搞清楚FFT的原理。离散傅里叶变换,需要输入数据必需是2n,当输入的数据不是时,则补零,使其满足2n。因此,在使用Matlab进行FFT时,首先是知道离散数据的个数,然后对其补零,之后才是FFT运算。
在Matlab导入数据之后,我通常的做法是使用函数length对数据求大小,比如得到N,然后求解log2(N),比如是21.22。然后使用fft(data,222),之所以是222,是因为数据个数补零之后,数据个数是222。fft(data,222)得到的result就是通常的结果,这是个复数。对result求模,即通过函数abs(result)实现,得到的是幅度,这个时候得到的幅度谱和使用Origin得到的没有归一化的幅度谱是一致。但是,通常我们使用Origin是得到归一化的幅度谱,因此这里得到abs(result)之后,进行归一化,即abs(result)*2/222,在频率点零值处,归一化应该为abs(result)/222,频率点的设置为(0: 222-1)*fs/222,其中fs是采样率。最后plot(f, abs(result)*2/222)就是最后的归一化的幅度,注意就是零值处的特殊处理。
Origin作归一化处理的时候,并没有考虑零值和其他地方的不同,都是除以n/2
使用Matlab得到FFT结果之后,就是导出数据,通常数据较大,使用一般的粘贴复制太慢或不行,我一般使用函数dlmwrite。导出的数据,再导入Origin画图,也比较方便。
Matlab计算的FFT与通过Origin计算的FFT的更多相关文章
- GPU计算的十大质疑—GPU计算再思考
http://blog.csdn.NET/babyfacer/article/details/6902985 原文链接:http://www.hpcwire.com/hpcwire/2011-06-0 ...
- OpenStack-Ocata版+CentOS7.6 云平台环境搭建 — 6.在计算节点上安装并配置计算服务Nova
安装和配置计算节点这个章节描述如何在计算节点上安装和配置计算服务. 计算服务支持几种不同的 hypervisors.为了简单起见,这个配置在计算节点上使用 :KVM <kernel-based ...
- mysql 下 计算 两点 经纬度 之间的距离 计算结果排序
根据经纬度计算距离公式 公式 对上面的公式解释如下: Lung1 Lat1表示A点经纬度, Lung2 Lat2表示B点经纬度: a=Lat1 – Lat2 为两点纬度之差 b=Lung1 -Lung ...
- 机器学习进阶-直方图与傅里叶变换-傅里叶变换(高低通滤波) 1.cv2.dft(进行傅里叶变化) 2.np.fft.fftshift(将低频移动到图像的中心) 3.cv2.magnitude(计算矩阵的加和平方根) 4.np.fft.ifftshift(将低频和高频移动到原来位置) 5.cv2.idft(傅里叶逆变换)
1. cv2.dft(img, cv2.DFT_COMPLEX_OUTPUT) 进行傅里叶变化 参数说明: img表示输入的图片, cv2.DFT_COMPLEX_OUTPUT表示进行傅里叶变化的方法 ...
- MATLAB线性回归方程与非线性回归方程的相关计算
每次比赛都需要查一下,这次直接总结到自己的博客中. 以这个为例子: 2.线性方程的相关计算 x=[1,2,3,4,5]';%参数矩阵 X=[ones(5,1),x];%产生一个5行一列的矩阵,后接x矩 ...
- matlab第六章数据分析与多项式计算
MATLAB练习 第六章数据分析与多项式计算 1.max和min 1.分别求矩阵A中各列和各行元素中的最大值.max和min的用法一样 % [例6.1]分别求矩阵中各列和各行元素中的最大值. A=[5 ...
- matlab 矢量化编程(一)—— 计算 AUC
AUC = sum( (Y(2:end)+Y(1:end-1))/2 .* (X(2:end) - X(1:end-1)) X 和 Y 均是向量: Y(2:end) - Y(1:end-1),是 Y( ...
- OpenJudge计算概论-球弹跳高度的计算
/*======================================================================== 球弹跳高度的计算 总时间限制: 1000ms 内存 ...
- java计算过G文件md5 值计算
package io.bigdata; import java.io.File; import java.io.FileInputStream; import java.io.IOException; ...
随机推荐
- 【Spring】详解spring事务属性
Spring声明式事务让我们从复杂的事务处理中得到解脱.使得我们再也无需要去处理获得连接.关闭连接.事务提交和回滚等这些操作.再也无需要我们在与事务相关的方法中处理大量的try…catch…final ...
- 2、买卖股票的最佳时机 II
2.买卖股票的最佳时机 II 给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格. 设计一个算法来计算你所能获取的最大利润.你可以尽可能地完成更多的交易(多次买卖一支股票). 注意:你不能 ...
- sessionStorage记录返回前端的数据,用于解决登录拦截器刷新页面的问题
1.问题出现的场景与解决 实现一个登录拦截器,重写doFilter方法,判断用户的登录状态,在用户长时间未操作或者异地登录时前端进行提示,完整代码如下 public class LoginValida ...
- 洛谷P1742 最小圆覆盖(计算几何)
题意 题目链接 Sol 暴力做法是\(O(n^3)\)枚举三个点然后check一下是否能包含所有点 考虑一种随机算法,首先把序列random_shuffle一下. 然后我们枚举一个点\(i\),并维护 ...
- 【20181025】win10下Python安装osmnx包
系统:win10 64位 Python:3.7 在网上查了很多资料,主要有两种方法安装osmnx包,一种是通过anaconda安装,这种方法会自动帮你装好osmnx的依赖包:另一种是用pip安装,需要 ...
- css选择器:基本选择器
基本选择器 1.通用元素选择器 *表示应用到所有的标签. *{ padding:0px; margin:0px; } 2.元素/标签选择器 匹配所有p标签的元素 p{ color:red; backg ...
- vue 环境的搭建及初始化项目
其实超级简单,虽然网上很多,但是我顺便记录下相当于做笔记吧 1nodejs 的安装, 在node官网下载,点击安装,安装的时候最好选择路径在d盘 2设置环境变量 我的电脑-->属性-->系 ...
- Expo大作战(二十九)--expo sdk api之registerRootComponent(注册跟组件),ScreenOrientation(屏幕切换),SecureStore,
简要:本系列文章讲会对expo进行全面的介绍,本人从2017年6月份接触expo以来,对expo的研究断断续续,一路走来将近10个月,废话不多说,接下来你看到内容,讲全部来与官网 我猜去全部机翻+个人 ...
- Node 编码规范(优秀是一种习惯)
编码规范 空格与格式 1. 缩进 采用2个空格缩进,而不是tab缩进. 空格在编辑器中与字符是等宽的,而tab可能因编辑器的设置不同.2个空格会让代码看起来更紧凑.明快. 2. 变量声明 永远用var ...
- jenkins离线插件安装--笨方法
Jenkins离线安装插件有多种方式:代理or离线导入,但离线导入可能会存在版本差异或依赖的插件文件导致异常发生), 以下为笨方法但会很准确的解决以上的问题. 同版本Jenkins在线下载:模糊掉的是 ...