机器学习中在为了减小loss时可能会带来模型容量增加,即参数增加的情况,这会导致模型在训练集上表现良好,在测试集上效果不好,也就是出现了过拟合现象。为了减小这种现象带来的影响,采用正则化。正则化,在减小训练样本误差的同时,限制参数的增长,限制参数过多或者过大,从而提高模型的泛化性。

1. L1 正则化

L1 正则化公式也很简单,直接在原来的损失函数基础上加上权重参数的绝对值:

2. L2 正则化

L2 正则化公式非常简单,直接在原来的损失函数基础上加上权重参数的平方和:

L1范式和L2范式的区别

(1) L1范式是对应参数向量绝对值之和

(2) L1范式具有稀疏性

(3) L1范式可以用来作为特征选择,并且可解释性较强(这里的原理是在实际Loss function 中都需要求最小值,根据L1的定义可知L1最小值只有0,故可以通过这种方式来进行特征选择)

(4) L2范式是对应参数向量的平方和,再求平方根

(5) L2范式是为了防止机器学习的过拟合,提升模型的泛化能力

L2正则 对应的是加入2范数,使得对权重进行衰减,从而达到惩罚损失函数的目的,防止模型过拟合。保留显著减小损失函数方向上的权重,而对于那些对函数值影响不大的权重使其衰减接近于0。相当于加入一个gaussian prior。
L1正则 对应得失加入1范数,同样可以防止过拟合。它会产生更稀疏的解,即会使得部分权重变为0,达到特征选择的效果。相当于加入了一个laplacean prior。

正则化,L1,L2的更多相关文章

  1. 机器学习 - 正则化L1 L2

    L1 L2 Regularization 表示方式: $L_2\text{ regularization term} = ||\boldsymbol w||_2^2 = {w_1^2 + w_2^2 ...

  2. 正则化 L1 L2

    机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作ℓ1ℓ1-norm和ℓ2ℓ2-norm,中文称作L1正则化和L2正则化,或者L1范数和L2范数. L1正则化和 ...

  3. 【深度学习】L1正则化和L2正则化

    在机器学习中,我们非常关心模型的预测能力,即模型在新数据上的表现,而不希望过拟合现象的的发生,我们通常使用正则化(regularization)技术来防止过拟合情况.正则化是机器学习中通过显式的控制模 ...

  4. L1正则化比L2正则化更易获得稀疏解的原因

    我们知道L1正则化和L2正则化都可以用于降低过拟合的风险,但是L1正则化还会带来一个额外的好处:它比L2正则化更容易获得稀疏解,也就是说它求得的w权重向量具有更少的非零分量. 为了理解这一点我们看一个 ...

  5. 机器学习之正则化【L1 & L2】

    前言 L1.L2在机器学习方向有两种含义:一是L1范数.L2范数的损失函数,二是L1.L2正则化 L1范数.L2范数损失函数 L1范数损失函数: L2范数损失函数: L1.L2分别对应损失函数中的绝对 ...

  6. L1正则化和L2正则化

    L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择 L2正则化可以防止模型过拟合(overfitting):一定程度上,L1也可以防止过拟合 一.L1正则化 1.L1正则化 需注意, ...

  7. L1正则化与L2正则化的理解

    1. 为什么要使用正则化   我们先回顾一下房价预测的例子.以下是使用多项式回归来拟合房价预测的数据:   可以看出,左图拟合较为合适,而右图过拟合.如果想要解决右图中的过拟合问题,需要能够使得 $ ...

  8. L1,L2范数和正则化 到lasso ridge regression

    一.范数 L1.L2这种在机器学习方面叫做正则化,统计学领域的人喊她惩罚项,数学界会喊她范数. L0范数  表示向量xx中非零元素的个数. L1范数  表示向量中非零元素的绝对值之和. L2范数  表 ...

  9. ML-线性模型 泛化优化 之 L1 L2 正则化

    认识 L1, L2 从效果上来看, 正则化通过, 对ML的算法的任意修改, 达到减少泛化错误, 但不减少训练误差的方式的统称 训练误差 这个就损失函数什么的, 很好理解. 泛化错误 假设 我们知道 预 ...

  10. 机器学习中L1,L2正则化项

    搞过机器学习的同学都知道,L1正则就是绝对值的方式,而L2正则是平方和的形式.L1能产生稀疏的特征,这对大规模的机器学习灰常灰常重要.但是L1的求解过程,实在是太过蛋疼.所以即使L1能产生稀疏特征,不 ...

随机推荐

  1. 消息系统kafka原理解析

    Kakfa起初是由LinkedIn公司开发的一个分布式的消息系统,后成为Apache的一部分,它使用Scala编写,以可水平扩展和高吞吐率而被广泛使用.目前越来越多的开源分布式处理系统如Clouder ...

  2. H5的缓存 manifest

    H5里面的App Cache是由开发Web页面的开发者控制的,而不是由Native去控制的,但是Native里面的WebView也需要我们做一下设置才能支持H5的这个特性. 1.工作原理 写Web页面 ...

  3. 好用的 over the wall教程

    还在为翻 xxx墙苦恼吗,一分钟就能搞定的翻xxx墙教程 1.下载chrome扩展插件 Proxy SwitchyOmega,加入到谷歌的高级扩展程序当中,这个就不详细讲解了. 请戳 https:// ...

  4. Elasticsearch学习笔记(一)cat API

    一.Cat通用参数 Verbose GET /_cat/XXX/?v 开启详细输出 Help GET /_cat/XXX/?help 输出可用的列 Headers GET /_cat/XXX/?h=c ...

  5. Python3学习之路~5.10 PyYAML模块

    Python也可以很容易的处理ymal文档格式,只不过需要安装一个模块,参考文档:http://pyyaml.org/wiki/PyYAMLDocumentation

  6. PowerBI新功能: PowerBI多报表共享一个数据集

    在PowerBI里面建模,来来回回摸了一遍之后,肯定不想在另外一个报表的时候重复一次建模--这样不利于复用和维护. 四月份的更新版提供了一个预览功能(如下),可以让多报表(pbix)共享同一个数据集. ...

  7. Py中查看数据类型【转载】

    转自:https://www.jianshu.com/p/bb5cc438e3b2 1.内置函数isinstance(object, (type1,type2...)) isinstance('con ...

  8. Git环境配置

    1,下载Git-2.16.2-64-bit.exe并安装, 全部为默认设置 下载地址:http://git-scm.com/download/win 2 在开始菜单中,单击Git CMD,执行下面命令 ...

  9. 虚拟机与Docker有何不同

    http://www.techug.com/post/comparing-virtual-machines-vs-docker-containers.html 译者按: 各种虚拟机技术开启了云计算时代 ...

  10. python实现比对两个json串的方法

    记录瞬间 前段时间为了解决一些实际问题,引出了要对json字符串进行比对的需求. 觉得有意义,作以简单记录. # 比对数据 def compare_data(set_key, src_data, ds ...