Google的BigTable架构在分布式结构化存储方面大名鼎鼎,其中的MergeDump模型在读写之间找到了一个较好的平衡点,很好的解决了web scale数据的读写问题。

MergeDump的理论基础是LSM-Tree (Log-Structured Merge-Tree), 原文见:LSM Tree

下面先说一下LSM-Tree的基本思想,再记录下读文章的几点感受。

LSM思想非常朴素,就是将对数据的更改hold在内存中,达到指定的threadhold后将该批更改批量写入到磁盘,在批量写入的过程中跟已经存在的数据做rolling merge。

拿update举个例子:

比如有1000万行数据,现在希望update table.a set addr='new addr' where pk = '833',

如果使用B-Tree类似的结构操作,就需要:

1. 找到该条记录所在的page,

2. load page到内存(如果恰好该page已经在内存中,则省略该步)

3. 如果该page之前被修改过,则先flush page to disk

4. 修改数据

上面的动作平均来说有两次disk I/O,

如果采用LSM-Tree类似结构,则:

1. 将需要修改的数据直接写入内存

可见这里是没有disk I/O的。

当然,我们要说,这样的话读的时候就费劲了,需要merge disk上的数据和memory中的修改数据,这显然降低了读的性能。

确实如此,所以作者其中有个假设,就是写入远大于读取的时候,LSM是个很好的选择。我觉得更准确的描述应该是”优化了写,没有显著降低读“,因为大部分时候我们都是要求读最新的数据,而最新的数据很可能还在内存里面,即使不在内存里面,只要不是那些更新特别频繁的数据,其I/O次数也是有限的。

所以LSM-Tree比较适合的应用场景是:insert数据量大,读数据量和update数据量不高且读一般针对最新数据。

文章读下来有以下几点感受:

1. 基本思想早就有了,作者给出了较好的表现形式。

2. Merge是page/block级别的,而不是BigTable中的文件级别的。这一点主要原因可能是BigTable在分布式场景下做block级别很困那,而且GFS也不支持修改。

3. 其提出的比较标准比较有趣,将磁盘容量,转速等结合起来给出一个以美元为单位的cost标准,然后跟B-Tree结构的实现做了比较,结果当然是大大胜出。但是这里我觉得作者有些比较是不合理的,比如LSM使用log而B-Tree没有使用,这显然对B-Tree不公,其实B-Tree如果使用log,写入性能应该不比LSM差,顺序读取可能差一些。

4. 在Multi components 中,提出Ci/Ci+1的比例达到20的时候是最优的,这个数字意义不大,但是其中的分析方法对于Merge策略的选择是个启发。

 
 

LSM-Tree (BigTable 的理论模型)(转)的更多相关文章

  1. LSM Tree解析

    引言 众所周知传统磁盘I/O是比较耗性能的,优化系统性能往往需要和磁盘I/O打交道,而磁盘I/O产生的时延主要由下面3个因素决定: 寻道时间(将磁盘臂移动到适当的柱面上所需要的时间,寻道时移动到相邻柱 ...

  2. LSM Tree 学习笔记——MemTable通常用 SkipList 来实现

    最近发现很多数据库都使用了 LSM Tree 的存储模型,包括 LevelDB,HBase,Google BigTable,Cassandra,InfluxDB 等.之前还没有留意这么设计的原因,最近 ...

  3. LSM Tree存储组织结构介绍

    LSM Tree(Log Structured Merge Trees)数据组织方式被应用于多种数据库,如LevelDB.HBase.Cassandra等,下面我们从为什么使用LSM tree.LSM ...

  4. LSM Tree 学习笔记——本质是将随机的写放在内存里形成有序的小memtable,然后定期合并成大的table flush到磁盘

    The Sorted String Table (SSTable) is one of the most popular outputs for storing, processing, and ex ...

  5. Log-Structured Merge Tree (LSM Tree)

    一种树,适合于写多读少的场景.主要是利用了延迟更新.批量写.顺序写磁盘(磁盘sequence access比random access快). 背景 回顾数据存储的两个“极端”发展方向 加快读:加索引( ...

  6. 数据映射-LSM Tree和SSTable

    Coming from http://blog.sina.com.cn/s/blog_693f08470101njc7.html 今天来聊聊lsm tree,它的全称是log structured m ...

  7. 【万字长文】使用 LSM Tree 思想实现一个 KV 数据库

    目录 设计思路 何为 LSM-Treee 参考资料 整体结构 内存表 WAL SSTable 的结构 SSTable 元素和索引的结构 SSTable Tree 内存中的 SSTable 数据查找过程 ...

  8. sstable, bigtable,leveldb,cassandra,hbase的lsm基础

    先看懂文献1和2 1. 先了解sstable.SSTable: Sorted String Table [2] [10] WiscKey:  类似myisam, key value分离, 根据ssd优 ...

  9. InfluxDB存储引擎Time Structured Merge Tree——本质上和LSM无异,只是结合了列存储压缩,其中引入fb的float压缩,字串字典压缩等

    The New InfluxDB Storage Engine: Time Structured Merge Tree by Paul Dix | Oct 7, 2015 | InfluxDB | 0 ...

随机推荐

  1. SVN权限管理

    转自:http://www.cnblogs.com/xingchen/archive/2010/07/22/1782684.html /******************************** ...

  2. JavaScript——正则表达式

    1.显式创建正则表达式:var searchPattern=new RegExp(‘+s’);加号会匹配字符串中任何一个带有一个或者多个连续的s. 2.RegExp对象的方法:test和exec te ...

  3. (转)Xcode调试技巧

    转自http://www.apkbus.com/android-140340-1-1.html 这篇文章给大家带来的是一些Xcode实用技巧,比如: • 摆脱NSlog打印输出,使用断点日志. • 摆 ...

  4. 向数据库中全部表中增加一个字段的SQL

    SELECT 'ALTER TABLE ' + NAME + ' ADD 字段名 int not null default 0' FROM sysobjects AS sWHERE s.[type] ...

  5. Java for LeetCode 204 Count Primes

    Description: Count the number of prime numbers less than a non-negative number, n. 解题思路: 空间换时间,开一个空间 ...

  6. settings的保存位置

    xp:C:\Documents and Settings\Administrator\Local Settings\Application Data\ win8 C:\Users\XXX\AppDat ...

  7. [转]AndroidStudio导出jar包

    原文链接:http://blog.csdn.net/hjq842382134/article/details/38538097# 1. 不像在Eclipse,可以直接导出jar包.AndroidStu ...

  8. 1.kvm的基本搭建

    一.kvm简介 KVM 是指基于 Linux 内核的虚拟机(Kernel-based Virtual Machine). 2006 年 10 月,由以色列的Qumranet 组织开发的一种新的&quo ...

  9. tp5中的一些小方法

    // 当使用一个新页面替换当前页面的body后,body刷新了,所选择的select值就不能保存住,解决方法如下: 作业题目<select> <option>--请选择--&l ...

  10. 【leetcode】Remove Linked List Elements(easy)

    Remove all elements from a linked list of integers that have value val. ExampleGiven: 1 --> 2 --& ...