题目描述 Description

神牛有很多…当然…每个同学都有自己衷心膜拜的神牛.
某学校有两位神牛,神牛甲和神牛乙。新入学的N位同学们早已耳闻他们的神话。所以,已经衷心地膜拜其中一位了。
现在,老师要给他们分机房。
但是,要么保证整个机房都是同一位神牛的膜拜者,或者两个神牛的膜拜者人数差不超过M。
另外,现在N位同学排成一排,老师只会把连续一段的同学分进一个机房。老师想知道,至少需要多少个机房。

 
输入描述 Input Description

输入文件第一行包括N和M。
之后N行,每行一个整数,1表示神牛甲的崇拜者,2表示神牛乙的崇拜者。

 
输出描述 Output Description

输出一个整数,表示最小需要机房的数量。

 
样例输入 Sample Input

5 1 

2  


2

样例输出 Sample Output

2

 
数据范围及提示 Data Size & Hint

对于30%的数据,有1≤N,M≤50;
对于100%的数据,有1≤N,M≤2500

本题可以转化为:将一段区间上的所有的点合并,求最少可以合并为多少的区间。

假设区间f[1,4]有4个点:

1、若最后2个能合并,即合并f[3,4],那么合并后的区间数a=f[1,2]+1,最后2个点合并为1个区间,就是那个1;f[1,2]暂且不管。

2、若最后3个能合并,即合并f[2,4],那么合并后的区间数b=f[1,1]+1,最后3个点合并为1个区间,就是那个1;f[1,1]暂且不管。

3、若最后4个能合并,即合并f[1,4],那么合并后的区间数c=f[1,0]+1,很明显,c=1.

请看加红色的部分,发现什么了吗?他们都是从1开始的,这在后面会用到

那么我为什么要倒着看区间能否合并呢?

因为动态规划递推到f[1,4]时,已经计算完了f[1,3],f[1,3]的值是有3个点时最优的,计算f[1,3]之前就计算完了f[1,2],f[1,2]的值是有2个点是最优的,以此类推。

倘若正着判断,我算区间f[1,4],首先看前2个能否合并,即f[1,4]=f[1,2]+f[3,4],前2个若能合并f[1,2]=1,但f[3,4]并不知道。

由此看出倒着推的好处是:另一个区间是从1开始的,而且这个区间在这之前已经确定了最优值,可以实现O(1)复杂度确定上面a、b、c的值(就是直接用)。而正着推得话,可以看到,前面f[3,4]是区间中的一段,不能直接利用,而且f[3,4]的最优解是什么,我们并不知道。

所以动态转移方程:

设当前要排队的区间为f[1,n],那么f[1,n]=min(f[1,m]+1),1<m<=n

初始化条件:答案数组ans[]除0外,都置为极大值,所以不能用memset(ans,127,sizeof(ans))。为什么呢?因为在循环计算f[1,k]时,是通过f[1,k-1]得到前几个的最优值。f[1,1]就可以通过f[0]递推得到,继而推出后面所有的。

那就有人有疑问了:我memset(ans,127,sizeof(ans))之后,另置f[1,1]=1,从第2个开始往后推,不就行了吗?答案是完全可以,个人习惯所致

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
int n,m,a[],f[];
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
for(int i=;i<=n;i++) f[i]=;//初始化
for(int i=;i<=n;i++)
{
int s1=,s2=,minn=;//s1,当前膜拜1的总人数,s2当前膜拜2的总人数,minn最少可以合并为多少个,即最少房间数
for(int j=i;j;j--)
{
if(a[j]==) s1++;
else s2++;
if(!s1||!s2||abs(s1-s2)<=m)
minn=min(minn,f[j-]+);
}
f[i]=minn;
}
printf("%d",f[n]);
}

codevs 3369 膜拜的更多相关文章

  1. codevs 3369 膜拜(线型)

    3369 膜拜 http://codevs.cn/problem/3369/ 题目描述 Description 神牛有很多…当然…每个同学都有自己衷心膜拜的神牛.某学校有两位神牛,神牛甲和神牛乙.新入 ...

  2. 膜拜(codevs 3369)

    3369 膜拜  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解       题目描述 Description 神牛有很多…当然…每个同学都有自己衷心膜拜的 ...

  3. CODEVS 必做题:3149、2821、1531、3369、1230

    3149 爱改名的小融 2  时间限制: 2 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解       题目描述 Description Wikioi上有个人叫小融,他喜 ...

  4. codevs 3289 花匠

    题目:codevs 3289 花匠 链接:http://codevs.cn/problem/3289/ 这道题有点像最长上升序列,但这里不是上升,是最长"波浪"子序列.用动态规划可 ...

  5. codevs 1082 线段树练习 3(区间维护)

    codevs 1082 线段树练习 3  时间限制: 3 s  空间限制: 128000 KB  题目等级 : 大师 Master 题目描述 Description 给你N个数,有两种操作: 1:给区 ...

  6. codevs 1285 二叉查找树STL基本用法

    C++STL库的set就是一个二叉查找树,并且支持结构体. 在写结构体式的二叉查找树时,需要在结构体里面定义操作符 < ,因为需要比较. set经常会用到迭代器,这里说明一下迭代器:可以类似的把 ...

  7. codevs 1576 最长上升子序列的线段树优化

    题目:codevs 1576 最长严格上升子序列 链接:http://codevs.cn/problem/1576/ 优化的地方是 1到i-1 中最大的 f[j]值,并且A[j]<A[i] .根 ...

  8. codevs 1080 线段树点修改

    先来介绍一下线段树. 线段树是一个把线段,或者说一个区间储存在二叉树中.如图所示的就是一棵线段树,它维护一个区间的和. 蓝色数字的是线段树的节点在数组中的位置,它表示的区间已经在图上标出,它的值就是这 ...

  9. codevs 1228 苹果树 树链剖分讲解

    题目:codevs 1228 苹果树 链接:http://codevs.cn/problem/1228/ 看了这么多树链剖分的解释,几个小时后总算把树链剖分弄懂了. 树链剖分的功能:快速修改,查询树上 ...

随机推荐

  1. Eclipse中jsp、js文件编辑时,卡死现象解决汇总

    使用Eclipse编辑jsp.js文件时,经常出现卡死现象,在网上百度了N次,经过N次优化调整后,卡死现象逐步好转,具体那个方法起到作用,不太好讲.将所有用过的方法罗列如下: 1.取消验证 windo ...

  2. WeX5开源免费跨端开发工具-html5 app开发就用WeX5

    http://www.wex5.com/wex5/?utm_source=Baidu-0815

  3. ADO.Net(一)——增、删、改、查

    数据访问 对应命名空间:System.Data.SqlClient; SqlConnection:连接对象 SqlCommand:命令对象 SqlDataReader:读取器对象 CommandTex ...

  4. mysql技巧之select count的比较

        在工作过程中,时不时会有开发咨询几种select count()的区别,我总会告诉他们使用select count(*) 就好.下文我会展示几种sql的执行计划来说明为啥是这样.   1.测试 ...

  5. x01.Game.LitSkull: 梯次防御

    1.人要有点精神 人要有点精神,否则,不是沦落为毫无意义的看客,就是退化成食色性也的动物,有被开除球籍的危险,如晚清. 2.框架 引号头文件在当前目录下搜寻,三角头文件在配置目录下搜寻,这是一个简单的 ...

  6. hdu 5057 Argestes and Sequence(分块算法)

    Argestes and Sequence Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  7. STM32 DMA USART ADC

    转载自:http://www.cnblogs.com/UQYT/articles/2949794.html 这是一个综合的例子,演示了ADC模块.DMA模块和USART模块的基本使用. 我们在这里设置 ...

  8. Angular+Flask搭建一个记录工具

    平时用的最多的文本编辑器就是Notepad++,很多东西都是通过Notepad++直接记录的: 没有看完的网页链接 要整理.收藏的网页 读书笔记 要处理的事情 待看/看过的文档和电子书 等等... 随 ...

  9. 理解 QEMU/KVM 和 Ceph(2):QEMU 的 RBD 块驱动(block driver)

    本系列文章会总结 QEMU/KVM 和 Ceph 之间的整合: (1)QEMU-KVM 和 Ceph RBD 的 缓存机制总结 (2)QEMU 的 RBD 块驱动(block driver) (3)存 ...

  10. plain framework 1 版本更新 1.0.2 增加打包插件

    由于个别因素,该框架的文档没有及时的更新到博客上,但是离线的文档已经完成.本次更新对框架来说显得比较重要,因为在文档的编写过程中经过再次的阅读代码修复了不少错误,最主要的是统一了整个框架的标准风格.对 ...