UVA 11419SAM I AM(输出 最小覆盖点 )
参考博客:如何找取 最小覆盖点集合
题意:R*C大小的网格,网格上面放了一些目标。可以再网格外发射子弹,子弹会沿着垂直或者水平方向飞行,并且打掉飞行路径上的所有目标,计算最小多少子弹,各从哪些位置发射,才能将所有的目标全部打掉
分析:就是求最小覆盖点 以及 输出所有的覆盖点
最小覆盖点 == 最大匹配数
个人理解:
最大匹配数是用匈牙利算法求的,就是从左边一个点开始找到他看上的那个妹纸,如果那个妹纸已经名花有有主就跟那个男生换一个...沿着 ( 没匹配 - 匹配边 -... - 没匹配边) 这样的增广路径来探寻。
假设已经求得最大匹配,怎么证明最大匹配等于最小覆盖点呢, 首先从左边没有匹配上的边开始 找增光路,找到所有的点都标记一下,当然不会找到一个全的,如果全的话就不是最大匹配,又多出来一个匹配边。 那么最小覆盖点就是 左边 没标记 + 右边标记的, 为什么呢? 对于左边没标记的 也就是说他有 匹配边 同时与他相连的右边那个点 没被标记,(如果右边标记, 他就被标记了),所有左边 所有没标记的点 是 最大匹配边的一部分 , 然后右边标记的呢,从左边没标记点开始连向右边的点,右边的这个点一定被匹配上了的,右边标记的点也是匹配边的一个端点,组成了 最大匹配边的那一部分, 说白点就是 左边没标记的匹配边 就是这两个点就是相互喜欢型的,而右边标记的就是有别人暗恋的。
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <vector>
using namespace std;
const int Max = + ;
int n, m;
vector<int> G[Max];
int Left[Max], Right[Max]; // left[i]表示右边的i对应左边的编号,right[i]表示左边的i对应右边的编号
bool vis[Max]; // 右边的点有没有访问
bool S[Max]; // 左边的点有没有没标记
void init()
{
for (int i = ; i < n; i++)
G[i].clear();
}
void addedge(int u, int v)
{
G[u].push_back(v);
}
bool mach(int u)
{
S[u] = true;
int len = (int) G[u].size();
for (int i = ; i < len; i++)
{
int v = G[u][i];
if (!vis[v])
{
vis[v] = true;
if (Left[v] == - || mach(Left[v]))
{
Left[v] = u; // 存储匹配关系
Right[u] = v;
return true;
}
}
}
return false;
}
int solve()
{
memset(Left, -, sizeof(Left));
memset(Right, -, sizeof(Right));
int ans = ;
for (int i = ; i < n; i++)
{
memset(vis, , sizeof(vis));
if (mach(i))
ans++;
}
return ans;
}
int mincover(vector<int> & X, vector<int> & Y)
{
int ans = solve();
memset(vis, , sizeof(vis));
memset(S, , sizeof(S));
for (int i = ; i < n; i++)
{
if (Right[i] == -) // 从左边没有匹配的点开始找增广路
mach(i);
}
for (int i = ; i < n; i++)
if (!S[i]) // 左边没标记
X.push_back(i);
for (int i = ; i < m; i++)
if (vis[i]) // 右边标记的
Y.push_back(i);
return ans;
}
int main()
{
int c, r, N;
while (scanf("%d%d%d", &n, &m, & N) != EOF)
{
if (n == && m == && N == )
break;
init();
for (int i = ; i < N; i++)
{
scanf("%d%d", &r, &c);
r--;
c--;
addedge(r, c);
}
vector<int> X, Y;
int ans = mincover(X, Y);
printf("%d", ans);
for (int i = ; i < (int) X.size(); i++)
printf(" r%d", X[i] + );
for (int j = ; j < (int) Y.size(); j++)
printf(" c%d", Y[j] + );
printf("\n");
} return ;
}
UVA 11419SAM I AM(输出 最小覆盖点 )的更多相关文章
- UVA 624CD(01背包输出 + 输出路径)
You have a long drive by car ahead. You have a tape recorder, but unfortunately your best music is o ...
- 紫书 例题 9-10 UVa 1626 (区间dp + 输出技巧)
当前区间f(i, j)分两种情况,一种是s[i]于s[j]符合要求,那么可以转移到f[i + 1][j - 1] 这样答案只会更小或者相等 第二种是直接分成两个部分, 即f[i][j] = f[i][ ...
- UVA11419 SAM I AM —— 最小点覆盖 + 输出覆盖点集
题目链接:https://vjudge.net/problem/UVA-11419 题解: 1.二分图匹配之最小点覆盖.:把x坐标和y坐标看成是点, 图中的目标看成是边,所以最终的目的是求出用最少的点 ...
- B - Letter(最小覆盖矩形)
Problem description A boy Bob likes to draw. Not long ago he bought a rectangular graph (checked) sh ...
- Jessica's Reading Problem POJ - 3320(尺取法2)
题意:n页书,然后n个数表示各个知识点ai,然后,输出最小覆盖的页数. #include<iostream> #include<cstdio> #include<set& ...
- 题解:UVA10791 Minimum Sum LCM
原题 题目大意 输入整数\(n(1\le n<2^{31})\) ,求至少两个正整数,是它们的最小公倍数为$ n$,且这些整数的和最小.输出最小的和. 有多组测试输入,以\(0\)结束. 题解 ...
- 矩阵乘法优化DP复习
前言 最近做毒瘤做多了--联赛难度的东西也该复习复习了. Warning:本文较长,难度分界线在"中场休息"部分,如果只想看普及难度的可以从第五部分直接到注意事项qwq 文中用(比 ...
- UVa 11419 我是SAM(最小点覆盖+路径输出)
https://vjudge.net/problem/UVA-11419 题意:一个网格里面有一些目标,可以从某一行,某一列发射一发子弹,可以打掉它:求最少的子弹,和在哪里打? 思路: 每个点的x坐标 ...
- SAM I AM UVA - 11419(最小顶点覆盖+输出一组解)
就是棋盘问题输出一组解 https://blog.csdn.net/llx523113241/article/details/47759745 http://www.matrix67.com/blog ...
随机推荐
- List<T>与Dictionary<string,T>频繁检索的性能差距
一直对LINQ简洁高效的语法青睐有加,对于经常和资料库,SQL语法打交道的C#开发者来说,LINQ无疑是一个非常不错的选择,当要在List<T>(T为一个普通对象)集合中查找满足某些条件的 ...
- IIS W3SVC 无法启动1068错误的解决
苦苦寻找解决方法多天之后,终于看到了最简单的处理方法. 故障: 试遍网上各种方法,司马当活马,CMD下输入如下命令,然后重启: fsutil resource setautoreset true C: ...
- CSS 问题集锦
[1]让DIV中的内容居中 1.文字垂直居中,关键代码:height:100px;line-height:100px(两个值要相等) <div style="margin:0 auto ...
- linux初级,连网
第一次写,今天刚好装上centos,然后就玩装一些软件,但要联网,所以琢磨了半天连网,下面总结下今天积累的一些知识点吧! 首先需要查看电脑有没有装驱动:ifconfig -a, 看有没有eh0(网卡) ...
- Vue-loader 开启压缩后的一些坑
在使用vue-loader 配合webpack 对.vue文件进行加载的时候,如果开启了代码压缩会出来下面几种问题,做个记录. 丢失td结束标记,导致页面的布局错乱 input的属性type为text ...
- PHP mail()函数
<?php /* PHP mail()函数 参数 描述 to 必需.规定 email 接收者. subject 必需.规定 email 的主题.注释:该参数不能包含任何新行字符. message ...
- Beta冲刺---Day2
站立式会议 站立式会议内容总结: 221: 昨日完成: 1.这几天的安排,接口测试. 今天要完成: 1.协作编写系负责人审核 遇到问题: 1.无 328: 昨天完成的事情: 1.无 今天要完成的事情: ...
- python练习之购物车脚本
# -*- coding:utf-8 -*- #简单的购物车小程序 author:李瑞鑫 shopping_car =[] product_list_tatol = "---product ...
- poj3177 && poj3352 边双连通分量缩点
Redundant Paths Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 12676 Accepted: 5368 ...
- JDBC简介及编码步骤
一.什么是JDBC JDBC(Java Data Base Connectivity,java数据库连接)是一种用于执行SQL语句的Java API,可以为多种关系数据库提供统一访问,它由一组用Jav ...