背景

给出一个整数 n(n<10^30) 和 k 个变换规则(k<=15)。

规则:
一位数可变换成另一个一位数:
规则的右部不能为零。

例如:n=234。有规则(k=2):
2-> 5
3-> 6
上面的整数 234 经过变换后可能产生出的整数为(包括原数):
234
534
264
564
共 4 种不同的产生数

描述

给出一个整数 n 和 k 个规则。

求出:
经过任意次的变换(0次或多次),能产生出多少个不同整数。

仅要求输出个数。

格式

输入格式

n k
x1 y1
x2 y2
... ...
xn yn

输出格式

一个整数(满足条件的个数):

样例1

样例输入1[复制]

234 2
2 5
3 6

样例输出1[复制]

4

限制

每个测试点1s

来源

noip2002普及组第三题

----------------

一个数可以变换多次,floyd求传递闭包(初始化d[i][i]=1),乘法原理更新答案

要用高精度,注意输出

//
// main.cpp
// noip2002产生数
//
// Created by Candy on 9/10/16.
// Copyright © 2016 Candy. All rights reserved.
// #include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
typedef unsigned long long ll;
const int N=,B=1e4;
inline int read(){
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
} int k,x,y,d[N][N],f[N];
char s[N];
void floyd(){
for(int i=;i<=;i++) d[i][i]=;
for(int k=;k<=;k++)
for(int i=;i<=;i++)
for(int j=;j<=;j++)
d[i][j]=d[i][j]||(d[i][k]&&d[k][j]);
for(int i=;i<=;i++)
for(int j=;j<=;j++) if(d[i][j]) f[i]++;
}
struct big{
int d[],size;
big(){size=;}
} ans;
void chengInt(big &a,int k){
int g=,i;
for(i=;i<=a.size;i++){
int tmp=a.d[i]*k;
a.d[i]=(tmp+g)%B;
g=(tmp+g)/B;
}
while(g){
a.d[i++]=g%B; a.size++;
g/=B;
}
}
int main(int argc, const char * argv[]) {
scanf("%s%d",s,&k);
for(int i=;i<=k;i++) scanf("%d%d",&x,&y),d[x][y]=;
floyd();
ans.d[]=;
int len=strlen(s);
for(int i=;i<len;i++){
int a=s[i]-'';
chengInt(ans,f[a]);
//printf("f %d %d\n",a,f[a]);
}
for(int i=ans.size;i>=;i--){
if(i!=ans.size){
if(ans.d[i]<) cout<<"";
else if(ans.d[i]<) cout<<"";
else if(ans.d[i]<) cout<<"";
}
cout<<ans.d[i];
}
return ;
}

NOIP2002pj产生数[floyd 高精度]的更多相关文章

  1. [NOIP 2002普及组]产生数(floyd+高精度)

    https://www.luogu.org/problem/P1037 题目描述 给出一个整数 n(n<1030) 和 k 个变换规则(k<=15). 规则: 一位数可变换成另一个一位数: ...

  2. [luoguP1037] 产生数(floyd + 高精度)

    传送门 先用 floyd 求出每一个数可以变成那些数. 然后利用乘法原理求解,需要高精度. 代码 #include <cstdio> #include <cstring> #i ...

  3. TYVJ 矩阵取数 Label:高精度+dp

    题目描述 帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的n*m的矩阵,矩阵中的每个元素aij均为非负整数.游戏规则如下: 1.每次取数时须从每行各取走一个元素,共n个.m次后取完矩阵所有元素: 2. ...

  4. [JZYZOJ 1288][洛谷 1005] NOIP2007 矩阵取数 dp 高精度

    https://www.luogu.org/problem/show?pid=1005   dp好想,高精度练手题,有点不舒服的是前后取数位置的计算,代码量太少才会写题这么慢,noip之前虽然重点放在 ...

  5. UVA 125 统计路径条数 FLOYD

    这道题目折腾了我一个下午,本来我的初步打算是用SPFA(),进行搜索,枚举出发点,看看能到达某个点多少次,就是出发点到该点的路径数,如果出现环,则置为-1,关键在于这个判环过程,如果简单只找到某个点是 ...

  6. 【BZOJ 2822】2822: [AHOI2012]树屋阶梯(卡特兰数+高精度)

    2822: [AHOI2012]树屋阶梯 Description 暑假期间,小龙报名了一个模拟野外生存作战训练班来锻炼体魄,训练的第一个晚上,教官就给他们出了个难题.由于地上露营湿气重,必须选择在高处 ...

  7. [noip2002] 产生数

    题目描述 给出一个整数 n (n<1030)和 k 个变换规则 (k < 15) . 规则: 一位数可变换成另一个一位数: 规则的右部不能为零. 例如:n = 234 .有规则( k=2  ...

  8. DP+高精度 URAL 1036 Lucky Tickets

    题目传送门 /* 题意:转换就是求n位数字,总和为s/2的方案数 DP+高精度:状态转移方程:dp[cur^1][k+j] = dp[cur^1][k+j] + dp[cur][k]; 高精度直接拿J ...

  9. BZOJ 2822: [AHOI2012]树屋阶梯

    Description 求拼成阶梯状的方案数. Sol 高精度+Catalan数. 我们可以把最后一行无线延伸,所有就很容易看出Catalan数了. \(f_n=f_0f_{n-1}+f_1f_{n- ...

随机推荐

  1. [deviceone开发]-企业OA项目开源分享

    一.简介 是一个真实的企业OA项目改造的开源项目,几乎涵盖了所有常用的组件,包括环信实现在线聊天等功能,类似微信的朋友圈功能,自定义的智能搜索等,而且这个是真实的通过Http链接后台web服务,里面很 ...

  2. JavaScript强化教程 -- cocosjs场景切换

    场景切换 在main.js,将StartScene作为我们初始化运行的场景,代码如下: cc.LoaderScene.preload(g_resources, function () { cc.dir ...

  3. 学习zepto.js(对象方法)[1]

    zepto也是使用的链式操作,链式操作:函数返回调用函数的对象. 但并不是所有的对象方法都可以进行链式操作,举几个例子:.size(),.html()|.text()//不传参数的情况下; 若非特殊说 ...

  4. 为Sharepoint 2010 批量创建SharePoint测试用户

    无意搜到下面一篇文章,http://www.cnblogs.com/lambertqin/archive/2012/04/19/2457372.html,原作者写的太"高大上",可 ...

  5. SharePoint 2010 系统账户没完全控制权限了

    网上下载了一个试用版的wsp包,安装部署后感觉不好就卸载掉了.坑爹的事情发生了,系统账户登录网站集竟然没完全控制权限了.连添加列表项的权限都没有了. 去管理中心查看,网站集管理员,没发现问题. 更坑爹 ...

  6. JavaScript异步机制

    单线程异步执行的JavaScript JavaScript是单线程异步执行的,单线程意味着代码在任务队列中会按照顺序一个接一个的执行.异步代表JavaScript代码在任务队列中的顺序并不完全等同于代 ...

  7. Oracle11g 统计信息——统计信息自动收集任务

    参考文献: Oracle11g 统计信息(一)-----统计信息自动收集任务 背景: 在使用cacti监控oracle数据库IO的时候发现每天晚上10点钟的时候oracle数据库读写明显增加,如下图所 ...

  8. 操作系统开发系列—13.e.三进程

    我们再来添加一个任务,首先添加一个进程体: void TestC() { int i = 0x2000; while(1){ disp_str("C"); disp_int(i++ ...

  9. 【Android】友盟的自动更新组件

    前言 又好又专业的服务能帮开发者省很多时间.一开始做项目也准备自己来统计数据.自己做自动更新,随着使用友盟服务的时间增加,渐渐放弃了这种想法,转而研究如何更充分的使用,这里分享一下使用自动更新组件的心 ...

  10. MySQL分表自增ID解决方案

    当我们对MySQL进行分表操作后,将不能依赖MySQL的自动增量来产生唯一ID了,因为数据已经分散到多个表中. 应尽量避免使用自增IP来做为主键,为数据库分表操作带来极大的不便. 在postgreSQ ...