【BZOJ-4435】Juice Junctions 最小割树(分治+最小割)+Hash
4435: [Cerc2015]Juice Junctions
Time Limit: 20 Sec Memory Limit: 512 MB
Submit: 20 Solved: 11
[Submit][Status][Discuss]
Description
你被雇佣升级一个旧果汁加工厂的橙汁运输系统。系统有管道和节点构成。每条管道都是双向的,且每条管道的流量都是1升每秒。管道可能连接节点,每个节点最多可以连接3条管道。节点的流量是无限的。节点用整数1到n来表示。在升级系统之前,你需要对现有系统进行分析。对于两个不同节点s和t,s-t的流量被定义为:当s为源点,t为汇点,从s能流向t的最大流量。以下面的第一组样例数据为例,1-6的流量为3,1-2的流量为2。计算每一对满足a<b的节点a-b的流量的和。
Input
第一行包括2个整数n和m(2<=n<=3000,0<=m<=4500)——节点数和管道数。
接下来m行,每行包括两个相异整数a,b(1<=a,b<=n),表示一条管道连接节点a,b。
每个节点最多连接3条管道,每对节点最多被一条管道连接。
Output
输出一个整数——每对满足a<b的节点a-b的流量之和。
Sample Input
1 3
2 3
4 1
5 6
2 6
5 1
6 4
5 3
Sample Output
HINT
Source
Solution
最小割树+Hash
根据最大流-最小割定理,把求最大流转化为求最小割,那么最小割树搞搞
因为每个点的度有限制,所以最小割不能超过3
把最小割hash出来,然后求和即可,大体的hash就是$hash[i][j]$表示最小割为$i$的时候,$j$点在分治过程中是否于$S$连通
PS:据说这题卡Dinic和ISAP的常数,只能用EK,但是好像Dinic能跑过?
UPD:事后和CA爷Claris讨论起来,EK是根据流量的复杂度,常数小,实用于这题;但我说Dinic也能过啊,慢了1倍是真的...然后得知原题时限7s....丧心病狂
Code
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
using namespace std;
int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
int n,m;
#define maxm 10010
#define maxn 3010
struct Edgenode{int next,cap,to;}edge[maxm];
int head[maxn],cnt=;
void add(int u,int v,int w)
{
cnt++;
edge[cnt].to=v; edge[cnt].next=head[u]; head[u]=cnt; edge[cnt].cap=w;
}
void insert(int u,int v,int w)
{
add(u,v,w); add(v,u,w);
}
int dis[maxn],que[maxn<<],cur[maxn],S,T;
bool bfs()
{
for (int i=; i<=n; i++) dis[i]=-;
que[]=S; dis[S]=; int he=,ta=;
while (he<ta)
{
int now=que[he++];
for (int i=head[now]; i; i=edge[i].next)
if (edge[i].cap && dis[edge[i].to]==-)
dis[edge[i].to]=dis[now]+,que[ta++]=edge[i].to;
}
return dis[T]!=-;
}
int dfs(int loc,int low)
{
if (loc==T) return low;
int w,used=;
for (int i=cur[loc]; i; i=edge[i].next)
if (edge[i].cap && dis[edge[i].to]==dis[loc]+)
{
w=dfs(edge[i].to,min(low-used,edge[i].cap));
edge[i].cap-=w; edge[i^].cap+=w;
used+=w; if (edge[i].cap) cur[loc]=i;
if (used==low) return low;
}
if (!used) dis[loc]=-;
return used;
}
#define inf 0x7fffffff
int dinic()
{
int tmp=;
while (bfs())
{
for (int i=; i<=n; i++) cur[i]=head[i];
tmp+=dfs(S,inf);
}
return tmp;
}
bool visit[maxn];
void DFS(int x)
{
visit[x]=;
for (int i=head[x]; i; i=edge[i].next)
if (!visit[edge[i].to] && edge[i].cap)
DFS(edge[i].to);
}
int id[maxn],tmp[maxn];
unsigned BASE=,hash[][maxn];
void work(int L,int R)
{
if (L==R) return;
for (int i=; i<=cnt; i+=)
edge[i].cap=edge[i^].cap=(edge[i].cap+edge[i^].cap)>>;
S=id[L],T=id[R];
int maxflow=dinic();
memset(visit,,sizeof(visit)); DFS(S);
BASE*=;
for (int i=; i<=n; i++) if (~dis[i]) hash[maxflow][i]+=BASE;
int l=L,r=R;
for (int i=L; i<=R; i++)
if (visit[id[i]]) tmp[l++]=id[i];
else tmp[r--]=id[i];
for (int i=L; i<=R; i++) id[i]=tmp[i];
work(L,l-); work(r+,R);
}
int ans=;
int main()
{
n=read(),m=read();
for (int u,v,i=; i<=m; i++)
u=read(),v=read(),insert(u,v,);
for (int i=; i<=n; i++) id[i]=i;
work(,n);
for (int i=; i<=n; i++)
for (int j=i+; j<=n; j++)
for (int k=; k<=; k++)
if (hash[k][i]!=hash[k][j]) {ans+=k;break;}
printf("%d\n",ans);
return ;
}
被卡常数的教育:(成功垫底.....)
【BZOJ-4435】Juice Junctions 最小割树(分治+最小割)+Hash的更多相关文章
- bzoj 2229 [Zjoi2011]最小割(分治+最小割)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2229 [题意] 回答若干个关于割不超过x的点对数目的询问. [思路] [最小割最多有n ...
- bzoj4519: [Cqoi2016]不同的最小割(分治最小割)
4519: [Cqoi2016]不同的最小割 题目:传送门 题解: 同BZOJ 2229 基本一样的题目啊,就最后用set记录一下就ok 代码: #include<cstdio> #inc ...
- 【BZOJ】4311: 向量(线段树分治板子题)
题解 我们可以根据点积的定义,垂直于原点到给定点构成的直线作一条直线,从正无穷往下平移,第一个碰到的点就是答案 像什么,上凸壳哇 可是--动态维护上凸壳? 我们可以离线,计算每个点能造成贡献的一个询问 ...
- [模板]最小割树(Gomory-Hu Tree)(luogu4897)
给定一个\(n\)个点\(m\)条边的无向连通图,多次询问两点之间的最小割 两点间的最小割是这样定义的:原图的每条边有一个割断它的代价,你需要用最小的代价使得这两个点不连通 Input 第一行两个数\ ...
- (2016北京集训十三)【xsy1532】网络战争 - 最小割树+树上倍增+KD树
题解: 好题!! 这题似乎能上我代码长度记录的前五? 调试时间长度应该也能上前五QAQ 首先题目要求的明显就是最小割,当然在整个森林上求Q次最小割肯定是会GG的,所以我们需要一个能快速求最小割的算法— ...
- 【洛谷P2504】聪明的猴子 最小瓶颈树
题目大意:给定一张 N 个顶点的完全图,边有边权,求该完全图的一棵最小瓶颈树. 最小瓶颈树:一棵最大边权值在同一张图的所有生成树中最小,即:最大边权值最小的生成树,其值为该树的最大边权的权值. 引理1 ...
- BZOJ 4435 [Cerc2015]Juice Junctions 分治最小割+hash
分治最小割的题目,要求n2. 之前用的n3的方法自然不能用了. 于是用hash,设hash[i][j]表示在最小割为i的时候,j是否与S联通. 看懂这个需要理解一下最小割树的构造. 这种题建议用EK写 ...
- bzoj4435: [Cerc2015]Juice Junctions(最小割树+hash)
传送门 首先最大流等于最小割,那么可以转化为最小割树来做(不知道什么是最小割树的可以看看这题->这里) 具体的做法似乎是$hash[i][j]$表示最小割为$i$时点$j$是否与$S$连通 然后 ...
- 【BZOJ-2229】最小割 最小割树(最大流+分治)
2229: [Zjoi2011]最小割 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1565 Solved: 560[Submit][Status ...
随机推荐
- IntelliJ IDEA 快捷键备忘
打开关闭项目结构树 Alt + 1 查看方法定义 Ctrl + B 查看方法实现 Ctrl + Alt + B 查看类结构 Ctrl + F12 弹出 或 Alt + 7 右侧栏 查看类继承结构 Ct ...
- ESXi 5.5 解决 cannot edit the settings of virtual machines of version 10
ESXi 5.5 是VMWare提供的免费虚拟服务器软件, 因为其优秀的性能, 对CPU, 内存和虚拟机数量都解除了限制, 成为很多个人或者小型公司的首选虚拟化工具. 在日常管理时常碰到的一个问题是, ...
- mysql新建用户的方法
新增 insert into mysql.user(Host,User,Password,ssl_cipher,x509_issuer,x509_subject) values("local ...
- Ruby中 使用Builder Xml Markup 操作XML
=begin Ruby中 使用Xml Markup 轻松的对XML文档操作, 项目地址:http://builder.rubyforge.org/ 使用之前我们需要安装Builder xml mark ...
- JS添加DOM元素CSS权重BUG
修改删除table的时候,比如拆分合并单元格,合并全部TR中的某个TD后在拆分还原,即使直接在td标签中设置了td的高宽属性,当td在css文件中设置为宽度auto的时候,不能显示出TD来,显示TD宽 ...
- 利用javascript对提交数据验证
优点:提交前验证.在客户端进行. <html> <head> <script language="javascript"> function c ...
- jboss:在standalone.xml中设置系统属性(system-properties)
就象在.net的web应用中,可以在web.config中设置appSettings一样,jboss的standalone.xml中也可以由开发人员自行添加系统属性,用法如下: </extens ...
- (一)GATT Profile和GAP 简介(目前所有的BLE应用都基于GATT,所以也要了解是怎么一回事)-转发
个人大总结:(先后顺序) 1.GAP协议定义多个角色(其中就有中心设备[GATT客户端](唯一)叫主设备||和外围设备[GATT服务端端](多个)也叫从设备). 2.先经过GAP协议,再有GATT协议 ...
- 纯手工打造漂亮的瀑布流,五大插件一个都不少Bootstrap+jQuery+Masonry+imagesLoaded+Lightbox!
前两天写的文章<纯手工打造漂亮的垂直时间轴,使用最简单的HTML+CSS+JQUERY完成100个版本更新记录的华丽转身!>受到很多网友的喜爱,今天特别推出姊妹篇<纯手工打造漂亮的瀑 ...
- c++ 指针(一)
指针:是说指针名表示的是地址.是一个变量,存储的是值的地址,而不是值本身 *运算符被称为间接值或解除引用运算符也可以叫做取地址符 声明一个指针 int * p_data; * p_data的类型为in ...