1.  MLlib

Apache Spark's scalable machine learning library, with APIs in Java, Scala and Python.

2.   数据类型

本地向量,标注点,本地矩阵,分布式矩阵

3. 本地向量 Local Vector

  • 稠密向量 dense        一个double数组,例如 (1.0, 0.0, 0.0, 0.0, 3.0)
  • 稀疏向量 sparse       两个并行的数组(indices和values),例如 (5, [0, 4], [1.0, 3.0]),其中5表示向量元素的个数,[0,4] 是indices,[1.0,3.0]是values

基类是Vector,  org.apache.spark.mllib.linalg.vector引入

import org.apache.spark.mllib.linalg.{Vector, Vectors}
val dv: Vector = Vectors.dense(1.0, 0.0, 3.0) // 创建一个dense vector (1.0, 0.0, 3.0).
val sv1: Vector = Vectors.sparse(3, Array(0, 2), Array(1.0, 3.0)) // 创建一个sparse vector (1.0, 0.0, 3.0).
val sv2: Vector = Vectors.sparse(3, Seq((0, 1.0), (2, 3.0))) // 等同于sv2

4. 标注点(Labeled Point)

用于有监督学习的训练样本称为标注点。

  • 一个标注点就是一个本地向量(或稠密或稀疏),这个向量和一个标签或者响应相关联。
  • 我们用一个double存储标签,这样我们就可以在回归和分类中使用标注点。
  • 对于二分类,一个标签可能是0或者是1;对于多分类,一个标签可能代表从0开始的类别索引

样本类是LabeledPoint, org.apache.spark.mllib.regression.LabeledPoint 引入。

import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint val pos = LabeledPoint(1.0, Vectors.dense(1.0, 0.0, 3.0)) // a positive label and a dense feature vector.
val neg = LabeledPoint(0.0, Vectors.sparse(3, Array(0, 2), Array(1.0, 3.0))) // a negative label and a sparse feature vector.

5. 本地矩阵(Local Matrix)

  • 稠密矩阵    按列顺序存储,用一个数组,加上(列,行) 表示数组大小。
  • 稀疏矩阵    非零条目值保存为压缩稀疏列 CSCCompressed Sparse Column)格式,这种格式也是以列顺序存储

例:   9.0    0.0

( 0.0    8.0)

0.0    6.0

稠密矩阵可以表示为,[3, 2, (9.0 , 0.0, 0.0, 0.0, 8.0, 6.0) ]  其中3为

稀疏矩阵  ??不懂

基类是Matrix, 可以导入 org.apache.spark.mllib.linalg.Matrices

import org.apache.spark.mllib.linalg.{Matrix,Matrices}

val dm: Matrix=Matrices.dense(3,2,Array(9.0,0.0,0.0,0.0,8.0,6.0)              // dense Matrix
val sm: Matrix=Matrices.sparse(3,2,Array(0,1,3),Array(0,2,1),Array(9,8,6)) //sparse Matrix

6. 分布式矩阵 Distributed Matrix

一个分布式矩阵拥有long类型的行和列索引,以及double类型的值,分布式的存储在一个或多个RDD

已经实现了3种分布式矩阵:

1)  RowMatrix

  • 是一个面向行的分布式矩阵,它没有有意义的行索引。行保存为一个RDD,每一行都是一个本地向量。
  • 可以通过  org.apache.spark.mllib.linalg.distributed.RowMatrix 引入。
  • 通过RDD[Vector]实例创建

2) IndexedRowMatrix

  • 和RowMatrix类似,它拥有行索引,行索引可以用于识别行和进行join操作
  • org.apache.spark.mllib.linalg.distributed.{IndexedRow, IndexedRowMatrix, RowMatrix}
  • 可以通过RDD[IndexedRow]实例创建
  • IndexedRowMatrix可以通过去掉它的行索引,转换成RowMatrix

3) CoordinateMatrix  

  • 一个分布式矩阵,它使用COO格式存储 (COO是啥)
  • 条目保存为一个RDD。每一个条目是一个(i: Long, j: Long, value: Double)格式的元组,行索引,列索引,value 条目值。
  • 应该仅仅在矩阵维度很大并且矩阵非常稀疏的情况下使用
  • org.apache.spark.mllib.linalg.distributed.{CoordinateMatrix, MatrixEntry}
  • 通过RDD[MatrixEntry]实例创建

4) BlockMatrix

  • 每个块保存为一个RDD
  • 与CoordinateMatrix类似,是一个((Int, Int), Matrix)类型的元组,其中(Int, Int)代表块的索引,Matrix代表子矩阵。
  • BlockMatrix支持诸如addmultiply等方法。BlockMatrix还有一个帮助方法validate,用来判断一个BlockMatrix是否正确的创建。
  • 调用toBlockMatrix从一个IndexedRowMatrix或者CoordinateMatrix创建一个BlockMatrix。 默认大小为 1024 * 1024 
  • org.apache.spark.mllib.linalg.distributed.BlockMatrix

  

Spark MLib 数据类型的更多相关文章

  1. Spark MLib:梯度下降算法实现

    声明:本文参考< 大数据:Spark mlib(三) GradientDescent梯度下降算法之Spark实现> 1. 什么是梯度下降? 梯度下降法(英语:Gradient descen ...

  2. Spark mlib的本地向量

    Spark mlib的本地向量有两种: DenseVctor :稠密向量 其创建方式 Vector.dense(数据) SparseVector :稀疏向量 其创建方式有两种: 方法一:Vector. ...

  3. Spark MLib完整基础入门教程

    Spark MLib 在Spark下进行机器学习,必然无法离开其提供的MLlib框架,所以接下来我们将以本框架为基础进行实际的讲解.首先我们需要了解其中最基本的结构类型,即转换器.估计器.评估器和流水 ...

  4. Spark MLib 基本统计汇总 2

    4. 假设检验 基础回顾: 假设检验,用于判断一个结果是否在统计上是显著的.这个结果是否有机会发生. 显著性检验 原假设与备择假设 常把一个要检验的假设记作 H0,称为原假设(或零假设) (null ...

  5. Spark MLib 基本统计汇总 1

    1.  概括统计 summary statistics MLlib支持RDD[Vector]列式的概括统计,它通过调用 Statistics 的 colStats方法实现. colStats返回一个  ...

  6. Spark PySpark数据类型的转换原理—Writable Converter

    Spark目前支持三种开发语言:Scala.Java.Python,目前我们大量使用Python来开发Spark App(Spark 1.2开始支持使用Python开发Spark Streaming ...

  7. Spark MLlib数据类型

        MLlib支持几种数据类型:本地向量(local vectors),和存储在一个简单机器中的矩阵(matrices),以及由一个或多个RDDs组成的分布式矩阵. 1,本地向量(Local Ve ...

  8. spark 机器学习基础 数据类型

    spark的机器学习库,包含常见的学习算法和工具如分类.回归.聚类.协同过滤.降维等使用算法时都需要指定相应的数据集,下面为大家介绍常用的spark ml 数据类型.1.本地向量(Local Vect ...

  9. Spark的mlib中的稠密向量和稀疏向量

    spark mlib中2种局部向量:denseVector(稠密向量)和sparseVector(稀疏向量) denseVector向量的生成方法:Vector.dense() sparseVecto ...

随机推荐

  1. Win10删除 6个多余文件夹

    下面附上注册表地址,HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\MyComputer\NameSpace ...

  2. 02Spring_Ioc和DI介绍

    什么是IOC? IoC: 控制反转, 解决程序对象紧密耦合问题(工厂+反射+ 配置文件), 将程序中原来构造对象的权限,交给IoC容器来构造,当程序需要对象,找IoC容器获取.

  3. win10下 解决系统进程占用80端口

    公司电脑从win7升级到win10,无法启动nginx,日志里输出:2016/05/30 09:26:01 [emerg] 7024#5440: bind() to 0.0.0.0:80 failed ...

  4. visual studio 2012 的制作ActiveX、打包和发布

    开发环境是Vs 2012  Framework 4.0 源码和制作工具在文章最下边 一. ActiveX控件Demo 新建一个Window窗体控件库项目 在自动生成的UserControl1页面上添加 ...

  5. mvc5+ef6+Bootstrap 项目心得--创立之初

    1.mvc5+ef6+Bootstrap 项目心得--创立之初 2.mvc5+ef6+Bootstrap 项目心得--身份验证和权限管理 3.mvc5+ef6+Bootstrap 项目心得--WebG ...

  6. GPS围栏两个多边形相交问题的奇葩解法

    前言 GPS测量仪测量的产地面积,然后提交到系统中,系统需要校验这块产地和其他产地是否有重叠,重叠超过10%就要提出警告这块产地已经被XXX登记入库了.GPS测量仪测量出来的数据是连续的经纬度坐标数据 ...

  7. 个人觉得目前 最好用的Taobao API的NodeJS封装

    话说,Top API SDK默认只给了四种语言的SDK,没有我大NodeJS,这可怎么行,于是封装了一个. 参考地址 GitHub: https://github.com/xiaoppp/TopAPI ...

  8. Groovy与Gradle在Android中的应用

    大家都知道, Android Studio 的编译构建,是基于Gradle的, 而Gradle又是基于Groovy, Groovy又是基于Java的 Android Studio 的gradle 本身 ...

  9. Stem函数绘图

    stem(n,x,'filled');第三个参数是绘图的样式,filled就是填充,将圆圈填充. Stem函数绘图各种不同的绘图函数分别适用于不同的场合,使用“stem”绘制针状图最简单,从附录中提供 ...

  10. git--- 拉取代码