k近邻算法的Java实现
k近邻算法是机器学习算法中最简单的算法之一,工作原理是:存在一个样本数据集合,即训练样本集,并且样本集中的每个数据都存在标签,即我们知道样本集中每一数据和所属分类的对应关系。输入没有标签的新数据之后,将新数据的每个特征和样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据的分类标签作为新数据的标签。一般来说,我们只选取样本数据中前k个最相似的数据。
Java实现:
KNNData.java
package KNN; public class KNNData implements Comparable<KNNData>{
double c1;
double c2;
double c3;
double distance;
String type; public KNNData(double c1, double c2, double c3, String type) {
this.c1 = c1;
this.c2 = c2;
this.c3 = c3;
this.type = type;
} @Override
public int compareTo(KNNData arg0) {
return Double.valueOf(this.distance).compareTo(Double.valueOf(arg0.distance));
}
}
KNN.java
package KNN; import java.util.Collections;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Set; public class KNN { //训练集
private List<KNNData> KNNDS = null; public KNN(List<KNNData> KNNDS) {
this.KNNDS = KNNDS;
} //欧式距离
private static double disCal(KNNData i, KNNData td) {
return Math.sqrt((i.c1 - td.c1)*(i.c1 - td.c1)+(i.c2 - td.c2)*(i.c2 - td.c2)+
(i.c3 - td.c3)*(i.c3 - td.c3));
} private static String getMaxValueKey(int k, List<KNNData> ts){
//只保留前k个元素 while(ts.size() != k) {
ts.remove(k);
} String sKey;
//保存key以及出现次数
HashMap<String,Integer> keySet = new HashMap<String,Integer>();
keySet.put(ts.get(0).type,1);
for (int x = 1; x < ts.size(); x++) {
sKey = ts.get(x).type;
if (keySet.containsKey(sKey)) {
keySet.put(sKey, keySet.get(sKey)+1);
} else {
keySet.put(sKey, 1);
}
}
Set<Map.Entry<String,Integer>> set = keySet.entrySet();
Iterator<Map.Entry<String,Integer>> iter = set.iterator(); int mValue = 0;
String mType = "";
while (iter.hasNext()){
Map.Entry<String,Integer> map = iter.next();
if (mValue < map.getValue()) {
mType = map.getKey();
mValue = map.getValue();
}
} return mType;
} public static String knnCal(int k, KNNData i, List<KNNData> ts) {
//保存距离
for (KNNData td : ts) {
td.distance = disCal(i, td);
}
Collections.sort(ts);
return getMaxValueKey(k, ts);
}
}
KNNTest.java
package KNN; import java.util.ArrayList;
import java.util.List; public class KNNTest { public static void main(String[] args) { List<KNNData> kd = new ArrayList<KNNData>();
//训练集
kd.add(new KNNData(1.2,1.1,0.1,"A"));
kd.add(new KNNData(1.2,1.1,0.1,"A"));
kd.add(new KNNData(7,1.5,0.1,"B"));
kd.add(new KNNData(6,1.2,0.1,"B"));
kd.add(new KNNData(2,2.6,0.1,"C"));
kd.add(new KNNData(2,2.6,0.1,"C"));
kd.add(new KNNData(2,2.6,0.1,"C"));
kd.add(new KNNData(100,1.1,0.1,"D")); System.out.println(KNN.knnCal(3, new KNNData(1.1,1.1,0.1,"N/A"), kd));
}
}
k近邻算法的Java实现的更多相关文章
- 机器学习实战笔记--k近邻算法
#encoding:utf-8 from numpy import * import operator import matplotlib import matplotlib.pyplot as pl ...
- 基本分类方法——KNN(K近邻)算法
在这篇文章 http://www.cnblogs.com/charlesblc/p/6193867.html 讲SVM的过程中,提到了KNN算法.有点熟悉,上网一查,居然就是K近邻算法,机器学习的入门 ...
- 从K近邻算法谈到KD树、SIFT+BBF算法
转自 http://blog.csdn.net/v_july_v/article/details/8203674 ,感谢july的辛勤劳动 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章 ...
- 机器学习之K近邻算法(KNN)
机器学习之K近邻算法(KNN) 标签: python 算法 KNN 机械学习 苛求真理的欲望让我想要了解算法的本质,于是我开始了机械学习的算法之旅 from numpy import * import ...
- k近邻算法
k 近邻算法是一种基本分类与回归方法.我现在只是想讨论分类问题中的k近邻法.k近邻算法的输入为实例的特征向量,对应于特征空间的点,输出的为实例的类别.k邻近法假设给定一个训练数据集,其中实例类别已定. ...
- KNN K~近邻算法笔记
K~近邻算法是最简单的机器学习算法.工作原理就是:将新数据的每一个特征与样本集中数据相应的特征进行比較.然后算法提取样本集中特征最相似的数据的分类标签.一般来说.仅仅提取样本数据集中前K个最相似的数据 ...
- 机器学习03:K近邻算法
本文来自同步博客. P.S. 不知道怎么显示数学公式以及排版文章.所以如果觉得文章下面格式乱的话请自行跳转到上述链接.后续我将不再对数学公式进行截图,毕竟行内公式截图的话排版会很乱.看原博客地址会有更 ...
- 机器学习——KNN算法(k近邻算法)
一 KNN算法 1. KNN算法简介 KNN(K-Nearest Neighbor)工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分 ...
- [机器学习] k近邻算法
算是机器学习中最简单的算法了,顾名思义是看k个近邻的类别,测试点的类别判断为k近邻里某一类点最多的,少数服从多数,要点摘录: 1. 关键参数:k值 && 距离计算方式 &&am ...
随机推荐
- mobile web HTML5 app曾经的踩过坑(转)
兼容性一直是前端工程师心中永远的痛.手机浏览器,因为基本是webkit(blink)内核当道,很多公司,不用考虑IE系的浏览器,所以感觉兼容性上的问题可能会少一些. 但是手机端,虽然出了很多工具,但是 ...
- 【转载】LoadRunner11下载以及详细破解说明
前期准备:LoadRunner11 下载请猛戳这里 传送门LoadRunner破解文件 下载请猛戳这里 传送门LoadRunner注册表清理工具 下载请猛戳这里 传送门 LoadRunner11破解方 ...
- URAL 1031. Railway Tickets(spfa)
题目链接 不知为何会在dp里呢...INF取小了,2Y. #include <cstring> #include <cstdio> #include <string> ...
- BZOJ4546: codechef XRQRS
Description 给定一个初始时为空的整数序列(元素由1开始标号)以及一些询问: 类型1:在数组后面就加入数字x. 类型2:在区间L…R中找到y,最大化(x xor y). 类型3:删除数组最后 ...
- AJAX-跨域解决之 JSONP
(一)AJAX ajax 就是从某个文件中去找相关的数据,把数据拿过来以后,利用数据 分析数据 去做我们想做的事情 分两部分:拿数据 用数据 oUsername ...
- osg实例介绍
osg实例介绍 转自:http://blog.csdn.net/yungis/article/list/1 [原]osgmotionblur例子 该例子演示了运动模糊的效果.一下内容是转自网上的:原理 ...
- MVVM deep dive
You can get a different instance each time by passing a different key to the GetInstance method. How ...
- Mysql bench执行sql语句批量操作数据所遇到的问题
一.错误 rror Code: 1175. You are using safe update mode and you tried to update a table without a WHERE ...
- Linux_Shell
一.Shell 种类与归属 Unix与Linux常见的Shell脚本解释器有bash,sh,csh,ksh等(PS: bash 完全兼容sh) bash : linux 默认的shell sh : u ...
- js动态获取当前系统时间+js字符串转换为date日期对象
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/ ...