Turing Tree

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4948    Accepted Submission(s): 1746

Problem Description
After inventing Turing Tree, 3xian always felt boring when solving problems about intervals, because Turing Tree could easily have the solution. As well, wily 3xian made lots of new problems about intervals. So, today, this sick thing happens again...
Now given a sequence of N numbers A1, A2, ..., AN and a number of Queries(i, j) (1≤i≤j≤N). For each Query(i, j), you are to caculate the sum of distinct values in the subsequence Ai, Ai+1, ..., Aj.
Input
The first line is an integer T (1 ≤ T ≤ 10), indecating the number of testcases below.
For each case, the input format will be like this:
* Line 1: N (1 ≤ N ≤ 30,000).
* Line 2: N integers A1, A2, ..., AN (0 ≤ Ai ≤ 1,000,000,000).
* Line 3: Q (1 ≤ Q ≤ 100,000), the number of Queries.
* Next Q lines: each line contains 2 integers i, j representing a Query (1 ≤ i ≤ j ≤ N).
 
Output
For each Query, print the sum of distinct values of the specified subsequence in one line.
 
Sample Input
2
3
1 1 4
2
1 2
2 3
5
1 1 2 1 3
3
1 5
2 4
3 5
 
Sample Output
1
5
6
3
6
 
 
题意:给T组数据,每组数据n个数及m个询问,每个询问[l,r]问区间不同的数的和为多少?
 
题解:每个询问离线处理,先按r递增排,再按l递增排序,定义一个last[]用于记录数最后出现的位置,维护一个已经更新的区间[ll,rr],每次只要加入[ll,l],[rr,r]的区间,放入树状数组进行求和
注意:加入树状数组的时候要判断last[],如果出现过就要删除原来的,保证树状数组里每个数只出现一次而且在最后一个位置
每个询问答案是sum[rr]-sum[ll-1]
 
#include<bits/stdc++.h>
#define N 145000
#define mes(x) memset(x, 0, sizeof(x));
#define ll __int64
const long long mod = 1e9+;
const int MAX = 0x7ffffff;
using namespace std;
ll c[N], n, a[N];
ll ans[N];
map<ll,int>last;
struct node{
int l,r,k;
}q[N];
int lowbit(int x){
return x&(-x);
}
int cmp(node a, node b){
if(a.r == b.r) return a.l<b.l;
return a.r<b.r;
}
int cmp1(node a, node b){
return a.k<b.k;
}
ll sum(int x){
ll sum=;
while(x > ){
sum = sum+c[x];
x -= lowbit(x);
}
return sum;
}
void add(int x,int d){
while(x <= n){
c[x] = c[x]+d;
x += lowbit(x);
}
}
int main()
{
int T, i, j, m, l, r;
while(~scanf("%d", &T)){
while(T--){
scanf("%d", &n);
for(i=;i<=n;i++)
scanf("%d", &a[i]);
scanf("%d", &m);
for(i=;i<m;i++){
scanf("%d%d", &q[i].l, &q[i].r);
q[i].k = i;
}
sort(q, q+m,cmp);
mes(c);
last.clear();
l = q[].l;
r = q[].l;
for(i=;i<m;i++){
for(j=q[i].l;j<=l;j++){
if(!last[a[j]]){
last[a[j]] = j;
add(j, a[j]);
}
}
for(j=r+;j<=q[i].r;j++){
if(!last[a[j]]){
last[a[j]] = j;
add(j, a[j]);//
}
else{
add(last[a[j]], -a[j]);
last[a[j]] = j;
add(j, a[j]);
}
}
ans[q[i].k] = sum(q[i].r)-sum(q[i].l-);
l = min(l,q[i].l);
r = max(r,q[i].r);
}
for(i=;i<m;i++)
printf("%I64d\n", ans[i]);
}
}
return ;
}
 
 
 

HDU3333 Turing Tree 树状数组+离线处理的更多相关文章

  1. HDU 3333 - Turing Tree (树状数组+离线处理+哈希+贪心)

    题意:给一个数组,每次查询输出区间内不重复数字的和. 这是3xian教主的题. 用前缀和的思想可以轻易求得区间的和,但是对于重复数字这点很难处理.在线很难下手,考虑离线处理. 将所有查询区间从右端点由 ...

  2. HDU 3333 Turing Tree --树状数组+离线处理

    题意:统计一段序列[L,R]的和,重复元素只算一次. 解法:容易看出在线做很难处理重复的情况,干脆全部讲查询读进来,然后将查询根据右端点排个序,然后离散化数据以后就可以操作了. 每次读入一个数,如果这 ...

  3. HDU 3333 Turing Tree (树状数组)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3333 题意就是询问区间不同数字的和. 比较经典的树状数组应用. //#pragma comment(l ...

  4. 2016 Multi-University Training Contest 5 1012 World is Exploding 树状数组+离线化

    http://acm.hdu.edu.cn/showproblem.php?pid=5792 1012 World is Exploding 题意:选四个数,满足a<b and A[a]< ...

  5. SPOJ DQUERY树状数组离线or主席树

    D-query Time Limit: 227MS   Memory Limit: 1572864KB   64bit IO Format: %lld & %llu Submit Status ...

  6. Necklace HDU - 3874 (线段树/树状数组 + 离线处理)

    Necklace HDU - 3874  Mery has a beautiful necklace. The necklace is made up of N magic balls. Each b ...

  7. D-query SPOJ 树状数组+离线

    D-query SPOJ 树状数组+离线/莫队算法 题意 有一串正数,求一定区间中有多少个不同的数 解题思路--树状数组 说明一下,树状数组开始全部是零. 首先,我们存下所有需要查询的区间,然后根据右 ...

  8. [bzoj1935][shoi2007]Tree 园丁的烦恼(树状数组+离线)

    1935: [Shoi2007]Tree 园丁的烦恼 Time Limit: 15 Sec  Memory Limit: 357 MBSubmit: 980  Solved: 450[Submit][ ...

  9. HDU 4417 - Super Mario ( 划分树+二分 / 树状数组+离线处理+离散化)

    题意:给一个数组,每次询问输出在区间[L,R]之间小于H的数字的个数. 此题可以使用划分树在线解决. 划分树可以快速查询区间第K小个数字.逆向思考,判断小于H的最大的一个数字是区间第几小数,即是答案. ...

随机推荐

  1. php for循环嵌套

    <?php     //2.打印一个50*50的 'o' 的正方形方整, 使用for的嵌套     // oooooo     // oooooo     // oooooo //for循环嵌套 ...

  2. vpn分类[转]

    目前常用的几种移动拨号的VPN技术及优势和劣势1)                WEB SSL优点:1.使用简单:每个终端用户不需要安装客户端,使用起来方便,不需要维护终端用户,通过IE直接来访问. ...

  3. spring-session整合

    如果项目之前没有整合过spring-data-redis的话,这一步需要先做,在maven中添加这两个依赖: <dependency>     <groupId>org.spr ...

  4. openstack-flat 网络问题

    使用packstack安装,版本为M,默认为vxlan网络, 操作系统为centos7. 由于学习的需要修改为flat网络. 首先修改配置文件: /etc/neutron/plugins/ml2/ml ...

  5. schtasks在win7下提示错误:无法加载列资源

    转自: http://blog.chinaunix.net/uid-24946452-id-2887851.html 查看cmd 编码 chcp 如使用 936中文GBK编码的话 schtasks.e ...

  6. LeetCode Palindrome Permutation II

    原题链接在这里:https://leetcode.com/problems/palindrome-permutation-ii/ 题目: Given a string s, return all th ...

  7. Git branch 和 Git checkout常见用法

    git branch 和 git checkout经常在一起使用,所以在此将它们合在一起 1.Git branch 一般用于分支的操作,比如创建分支,查看分支等等, 1.1 git branch 不带 ...

  8. keepalived工作原理和配置说明 腾讯云VPC内通过keepalived搭建高可用主备集群

    keepalived工作原理和配置说明 腾讯云VPC内通过keepalived搭建高可用主备集群 内网路由都用mac地址 一个mac地址绑定多个ip一个网卡只能一个mac地址,而且mac地址无法改,但 ...

  9. .net下的跨域问题

    环境: IIS7.0 MVC 4.0     公司官网 asp.net      需要的报名系统,需要有后台管理 由于是配合传统产业,所以MVC系统的数据,是由AIPS系统提供. (制作前是考虑去年用 ...

  10. LaTeX学习教程

    本来我对LaTeX不是看好的,毕竟都是命令格式的.觉得有word就足够啦word可视化操作方便快捷. 但是由于要写论文等,在导师要求下潜心学习一下,不知不觉间被LaTeX的强大功能所吸引.现在很多出版 ...