Educational Codeforces Round 64 选做
感觉这场比赛题目质量挺高(A 全场最佳),难度也不小。虽然 unr 后就懒得打了。
A. Inscribed Figures
题意
给你若干个图形,每个图形为三角形、圆形或正方形,第 \(i\) 个图形内接于第 \(i-1\) 个图形。问交点是否有限,如有限求交点个数。
(题目还有很多细节,具体见原题。)
题解
如果两个一样的图形相邻或正方形和三角形相邻。
圆和三角形有 \(3\) 个交点,和正方形有 \(4\) 个交点。
注意如果是 【圆、正方形、三角形】这样的,最上面有一个交点会重合,答案要减 1 。(出题人一开始也没注意到,后来重测导致unr)。
总体来说,这题真的没什么意思……
code
#include<bits/stdc++.h>
using namespace std;
int a[233];
int main()
{
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
int n; scanf("%d",&n);
for(int i=1;i<=n;++i) scanf("%d",&a[i]);
int ans=0,l=a[1];
for(int i=2;i<=n;++i)
{
int x=a[i];
if(x==l)
{
printf("Infinite");
return 0;
}
int t=x;
if(x>l) x=l,l=t;
if(x==1) ans+=l+1;
if(x==2) {
printf("Infinite");
return 0;
}
l=t;
}
for(int i=3;i<=n;++i) if(a[i-2]==3&&a[i-1]==1&&a[i]==2) --ans;
printf("Finite\n%d",ans);
}
B. Ugly Pairs
题意
给你一个字符串 \(S\) ,重排该字符串使得任意两个在字母表中相邻的字符在字符串中不相邻。若无解输出 No answer .
\(T\) 组数据。 \(T,|S| \le 100\) 。
题解
去重,只考虑字符的可重集。设 \(n\) 为去重后集合大小。
容易发现 \(n\le 3\) 时会出现无解。
我们可以考虑构造。有很多种构造方案可以解决。对于 \(n > 4\) ,一种构造方案是每次选 \(i\) 和 \(i+n/2\) 放在一起。
那么对于 \(n\le 4\) ,我们可以采用手玩或爆搜来解决。
code
#include<bits/stdc++.h>
using namespace std;
const int N=105;
char s[N]; bool flag,vis[30];
int n,m,num[30],ans[N];
void dfs(int u, int now)
{
if(flag) return ;
if(now>n)
{
flag=true;
for(int i=1;i<=n;++i)
while(num[ans[i]]--) putchar(ans[i]+'a');
puts("");
return ;
}
for(int i=0;i<26;++i)
{
if(!vis[i]&&num[i]&&i+1!=u&&i-1!=u)
{
vis[i]=true;
ans[now]=i;
dfs(i,now+1);
vis[i]=false;
}
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("b.in","r",stdin);
#endif
int T; scanf("%d",&T);
while(T--)
{
flag=false;
scanf("%s",s+1);
n=strlen(s+1);
memset(num,0,sizeof(num));
memset(vis,false,sizeof(vis));
for(int i=1;i<=n;++i) ++num[s[i]-'a'];
sort(s+1,s+1+n);
n=unique(s+1,s+1+n)-s-1;
if(n<=4)
{
dfs(233,1);
if(!flag) puts("No answer");
continue;
}
for(int i=1;i<=n>>1;++i)
{
while(num[s[i]-'a']--) putchar(s[i]);
while(num[s[i+(n-1)/2+1]-'a']--) putchar(s[i+(n-1)/2+1]);
}
if(n&1) while(num[s[n/2+1]-'a']--) putchar(s[n/2+1]);
puts("");
}
}
C. Match Points
题意
给你 \(n\) 个点 \(x_1,x_2,...,x_n\) 。两个点 \(i,j\) 能配对当且仅当 \(|x_i-x_j|\ge z\) 。求最大配对数量。
\(n\le 2\cdot 10^5, x_i,z\le 10^9\) 。
题解
首先直接顺次匹配肯定是错的,就不解释了。
考虑二分答案 \(y\) 。我们只要考虑前 \(y\) 个数,判断 \(x_i\) 能否和 \(x_{n-y+i}\) 匹配即可。
由这个二分答案的做法,我们可以进一步得出一个线性做法:我们可以把原序列分成两半然后顺次匹配,用双指针做一下就行了。
code
#include<bits/stdc++.h>
using namespace std;
inline int gi()
{
char c; int x=0,f=1;
for(;c<'0'||c>'9';c=getchar())if(c=='-')f=-1;
for(;c>='0'&&c<='9';c=getchar())x=(x<<1)+(x<<3)+c-'0';
return x*f;
}
const int N=2e5+5;
int a[N],n,z,ans;
int main()
{
#ifndef ONLINE_JUDGE
freopen("c.in","r",stdin);
#endif
n=gi(),z=gi();
for(int i=1;i<=n;++i) a[i]=gi();
sort(a+1,a+1+n);
int l=1,r=n/2+1;
while(l<=r&&l<=n/2&&r<=n)
{
if(a[r]-a[l]>=z) ++ans,++l;
++r;
}
printf("%d",ans);
}
D. 0-1-Tree
题意
给你一棵 \(n\) 个点的树,每条边标有 0 或 1 。问有多少对点 \((x,y)\) 满足 \(x\rightarrow y\) 的路径上 0 边不会在 1 边之后出现。
\(n\le 2\cdot 10^5\) 。
题解
先经过 0 边再经过 1 边。考虑枚举分界点,贡献即为 仅通过 0 边与其连通的节点数 * 仅通过 1 边与其连通的节点数。并查集维护即可。
code
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
inline int gi()
{
char c; int x=0,f=1;
for(;c<'0'||c>'9';c=getchar())if(c=='-')f=-1;
for(;c>='0'&&c<='9';c=getchar())x=(x<<1)+(x<<3)+c-'0';
return x*f;
}
const int N=200005;
int f[2][N],s[2][N];
int findset(int u, int w)
{
if(f[w][u]==u) return u;
return f[w][u]=findset(f[w][u],w);
}
void unionset(int u, int v, int w)
{
int fu=findset(u,w),fv=findset(v,w);
s[w][fu]+=s[w][fv];
f[w][fv]=fu;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("d.in","r",stdin);
#endif
int n=gi();
for(int i=0;i<2;++i)
for(int j=1;j<=n;++j) f[i][j]=j,s[i][j]=1;
for(int i=1;i<n;++i)
{
int u=gi(),v=gi(),w=gi();
unionset(u,v,w);
}
long long ans=0;
for(int i=1;i<=n;++i)
ans+=1ll*s[0][findset(i,0)]*s[1][findset(i,1)];
printf("%I64d",ans-n);
}
E. Special Segments of Permutation
题意
给你一个长度为 \(n\) 的排列 \(p\) ,询问有多少个区间 \([l,r]\) ,满足 \(\displaystyle p_l+p_r=\max_{i=l}^r p_i\) 。
\(n\le 2\cdot 10^5\)
题解
考虑最大值分治。对于区间 \([l,r]\) ,rmq 找到最大值 \(m\) ,我们选择 \([l,m-1]\) 和 \([m+1,r]\) 中长度最小的区间来枚举边界点。然后递归 \([l,m-1]\) 和 \([m+1,r]\) 。这样是启发式合并的复杂度 ,是 \(O(n\log n)\) 的 。
code
#include<bits/stdc++.h>
using namespace std;
inline int gi()
{
char c; int x=0,f=1;
for(;c<'0'||c>'9';c=getchar())if(c=='-')f=-1;
for(;c>='0'&&c<='9';c=getchar())x=(x<<1)+(x<<3)+c-'0';
return x*f;
}
const int N=2e5+5;
int f[N][30],p[N],pos[N],lg[N],ans,n;
inline int chmax(int x, int y) {
return p[x]>p[y]?x:y;
}
inline int getmx(int l, int r)
{
int t=lg[r-l+1];
return chmax(f[l][t],f[r-(1<<t)+1][t]);
}
void solve(int l, int r)
{
if(l>=r) return ;
int m=getmx(l,r);
if(m-l<r-m)
for(int i=l;i<m;++i)
ans+=(m<=pos[p[m]-p[i]]&&pos[p[m]-p[i]]<=r);
else
for(int i=m+1;i<=r;++i)
ans+=(l<=pos[p[m]-p[i]]&&pos[p[m]-p[i]]<=m);
solve(l,m-1),solve(m+1,r);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("e.in","r",stdin);
#endif
n=gi();
for(int i=2;i<=n;++i) lg[i]=lg[i-1]+!(i&(i-1));
for(int i=1;i<=n;++i) p[i]=gi(),pos[p[i]]=f[i][0]=i;
for(int j=1;(1<<j)<=n;++j)
for(int i=1;i+(1<<j)-1<=n;++i)
f[i][j]=chmax(f[i][j-1],f[i+(1<<j-1)][j-1]);
solve(1,n);
printf("%d",ans);
}
F. Card Bag
题意
你在玩游戏。给你 \(n\) 张牌,每张牌上有个数字 。你每次从中等概率选出一张牌并扔掉。设你选出的数为 \(x\) ,上一次选出的数为 \(y\) 。若 \(x>y\) 你输, \(x=y\) 你赢, \(x<y\) 继续。若牌扔完后游戏仍未结束则你输。求你赢的概率。
题解
我们需要选出一条单升序列,最后再选上序列中的最后一个数。
首先我们记下每个数字出现的次数,然后对原序列排序去重。
设 \(f(i,j)\) 表示前 \(i\) 个数选了 \(j\) 个的概率。
\(f(i,j)=f(i-1,j)+f(i-1,j-1)\times \frac{x_i}{n-j+1}\)
其中 \(x_i\) 表示这个数出现的个数。
统计答案的话在中间做一下就行了。
code
#include<bits/stdc++.h>
using namespace std;
inline int gi()
{
char c; int x=0,f=1;
for(;c<'0'||c>'9';c=getchar())if(c=='-')f=-1;
for(;c>='0'&&c<='9';c=getchar())x=(x<<1)+(x<<3)+c-'0';
return x*f;
}
const int N=5005,Mod=998244353;
int f[N][N],inv[N],num[N],a[N],n,m,ans;
int main()
{
#ifndef ONLINE_JUDGE
freopen("f.in","r",stdin);
#endif
n=m=gi();
for(int i=1;i<=n;++i) a[i]=gi(),++num[a[i]];
inv[0]=inv[1]=1;
for(int i=2;i<=n;++i) inv[i]=1ll*(Mod-Mod/i)*inv[Mod%i]%Mod;
sort(a+1,a+1+n);
n=unique(a+1,a+1+n)-a-1;
f[0][0]=1;
for(int i=1;i<=n;++i)
for(int j=0;j<=i;++j)
{
f[i][j]=1ll*num[a[i]]*inv[m-j+1]%Mod*f[i-1][j-1]%Mod;
ans=(ans+1ll*(num[a[i]]-1)*inv[m-j]%Mod*f[i][j]%Mod)%Mod;
f[i][j]=(f[i][j]+f[i-1][j])%Mod;
}
printf("%d",ans);
}
Educational Codeforces Round 64 选做的更多相关文章
- Educational Codeforces Round 65 选做
好久没更博客了,随便水一篇 E. Range Deleting 题意 给你一个长度为 \(n\) 的序列 \(a_1,a_2,\dots a_n\) ,定义 \(f(l,r)\) 为删除 \(l\le ...
- Educational Codeforces Round 63 选做
D. Beautiful Array 题意 给你一个长度为 \(n\) 的序列.你可以选择至多一个子段,将该子段所有数乘上给定常数 \(x\) .求操作后最大的最大子段和. 题解 考虑最大子段和的子段 ...
- Educational Codeforces Round 64 (Rated for Div. 2)题解
Educational Codeforces Round 64 (Rated for Div. 2)题解 题目链接 A. Inscribed Figures 水题,但是坑了很多人.需要注意以下就是正方 ...
- Educational Codeforces Round 64(ECR64)
Educational Codeforces Round 64 CodeForces 1156A 题意:1代表圆,2代表正三角形,3代表正方形.给一个只含1,2,3的数列a,ai+1内接在ai内,求总 ...
- Educational Codeforces Round 64 部分题解
Educational Codeforces Round 64 部分题解 不更了不更了 CF1156D 0-1-Tree 有一棵树,边权都是0或1.定义点对\(x,y(x\neq y)\)合法当且仅当 ...
- Educational Codeforces Round 64部分题解
Educational Codeforces Round 64部分题解 A 题目大意:给定三角形(高等于低的等腰),正方形,圆,在满足其高,边长,半径最大(保证在上一个图形的内部)的前提下. 判断交点 ...
- Educational Codeforces Round 64 (Rated for Div. 2) (线段树二分)
题目:http://codeforces.com/contest/1156/problem/E 题意:给你1-n n个数,然后求有多少个区间[l,r] 满足 a[l]+a[r]=max([l, ...
- Educational Codeforces Round 64 (Rated for Div. 2) A,B,C,D,E,F
比赛链接: https://codeforces.com/contest/1156 A. Inscribed Figures 题意: 给出$n(2\leq n\leq 100)$个数,只含有1,2,3 ...
- Educational Codeforces Round 64 -C(二分)
题目链接:https://codeforces.com/contest/1156/problem/C 题意:给出n个数和整形数z,定义一对数为差>=z的数,且每个数最多和一个数组成对,求最多有多 ...
随机推荐
- day 10 作业
# 2.写函数,接收n个数字,求这些参数数字的和. def sum_func(*args): total = 0 for i in args: total += i return total prin ...
- 三种方式安装mariadb-10.3.18
安装环境:CentOS Linux release 7.5.1804 (Core) 一.yum安装 官方网站yum配置方法链接:https://mariadb.com/kb/en/library/yu ...
- Java解析json数组三种情况
package com.example.demo.json; import java.util.Map; import com.alibaba.fastjson.JSON; import com.al ...
- 129、Java面向对象之static关键字一(修改static变量)
01.代码如下: package TIANPAN; class Book { // 描述的是同一个出版社的信息 private String title; // 普通属性 private double ...
- MacBook OSX VMWare Fusion 11安装 Tools For Windows
需要加载对应客户机系统的安装文件,可以在/Applications/VMware\ Fusion.app/Contents/Library/isoimages文件夹下找到: 设置虚拟机的光驱: 在虚拟 ...
- [多校联考]SLON!!!
题目描述 $SLON$是一个调皮的学生,为了让他静下心来,老师给他出了一道数学题:给定表达式$A$,$A$中含有变量$x$和$+,-,*,(,)$这些符号,括号成对出现,一个算术运算符均对应两个操作数 ...
- 今日份学习: springboot 用到的注解
笔记 上回用到的所有注解 @Around @Aspect @Autowired @Bean @Configuration @RequestMapping @ResponseBody @RestCont ...
- Python学习第三课——运算符
# 运算符 + - * / **(幂) %(取余) //(取整) num=9%2 print("余数为"+(str)(num)) #运算结果为 1 num1=9//2 print( ...
- Prometheus组件
Prometheus组件 上一小节,通过部署Node Exporter我们成功的获取到了当前主机的资源使用情况.接下来我们将从Prometheus的架构角度详细介绍Prometheus生态中的各个组件 ...
- Spark教程——(2)编写spark-submit测试Demo
创建Maven项目: 填写Maven的pom文件如下: <?xml version="1.0" encoding="UTF-8"?> <pro ...