[ZJOI2019]开关(生成函数+背包DP)
注:以下p[i]均表示概率
设F(x)为按i次开关后到达终止状态方案数的EGF,显然F(x)=π(ep[i]x/p+(-1)s[i]e-p[i]x/p)/2,然而方案包含一些多次到达合法方案的状态,需将其排除。n次操作回到原状态的方案数的生成函数G(x)=π(ep[i]x/p+e-p[i]x/p)/2。实现时只需要记录F(x)=Σa[i]eix/P中a[i](-P<=i<=P)的系数即可(G(x)也一样),于是暴力复杂度O(nP)。H(x)为答案的生成函数,显然F、G、H所对应的OGF f、g、h满足f(x)=g(x)h(x)。然后就是EGF向OGF的转化:F(x)=Σa[i]eix/P→f(x)=Σa[i]/(1-ix/P),其中-P<=i<=P,于是此时要求h'(1),然后根据除法求导公式,可以计算出h'(x),但x=1时函数不收敛。然后推一下式子就发现本题其实是背包DP了(这里打数学公式太累了就省略一些内容了),复杂度O(nP)
#include<bits/stdc++.h>
using namespace std;
const int N=2e5+,mid=1e5,mod=;
int n,sp,ans,s[N],a[N],f[N],g[N],tmp[N];
int qpow(int a,int b)
{
int ret=;
while(b)
{
if(b&)ret=1ll*ret*a%mod;
a=1ll*a*a%mod,b>>=;
}
return ret;
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d",&s[i]);
for(int i=;i<=n;i++)scanf("%d",&a[i]);
f[mid]=g[mid]=;
for(int i=;i<=n;i++)
{
sp+=a[i];
for(int j=-sp;j<=sp;j++)tmp[j+mid]=(g[j-a[i]+mid]+g[j+a[i]+mid])%mod;
memcpy(g,tmp,sizeof g);
for(int j=-sp;j<=sp;j++)tmp[j+mid]=(f[j-a[i]+mid]+(s[i]?mod-f[j+a[i]+mid]:f[j+a[i]+mid]))%mod;
memcpy(f,tmp,sizeof f);
}
for(int i=-sp;i<sp;i++)ans=(ans+1ll*(g[i+mid]-f[i+mid]+mod)*qpow(sp-i,mod-))%mod;
ans=1ll*ans*sp%mod;
printf("%d",ans);
}
[ZJOI2019]开关(生成函数+背包DP)的更多相关文章
- HDU-1171 Big Event in HDU(生成函数/背包dp)
题意 给出物品种类,物品单价,每种物品的数量,尽可能把其分成价值相等的两部分. 思路 背包的思路显然是用一半总价值当作背包容量. 生成函数则是构造形如$1+x^{w[i]}+x^{2*w[i]}+.. ...
- [ZJOI2019] 开关 (一种扩展性较高的做法)
[ZJOI2019] 开关 (一种扩展性较高的做法) 题意: 有n个开关,一开始状态都为关闭.每次随机选出一个开关将其状态改变,选出第i个开关的概率为${ p_i \over \sum_{i=1}^n ...
- 背包dp整理
01背包 动态规划是一种高效的算法.在数学和计算机科学中,是一种将复杂问题的分成多个简单的小问题思想 ---- 分而治之.因此我们使用动态规划的时候,原问题必须是重叠的子问题.运用动态规划设计的算法比 ...
- hdu 5534 Partial Tree 背包DP
Partial Tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid= ...
- HDU 5501 The Highest Mark 背包dp
The Highest Mark Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?p ...
- Codeforces Codeforces Round #319 (Div. 2) B. Modulo Sum 背包dp
B. Modulo Sum Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/577/problem/ ...
- noj [1479] How many (01背包||DP||DFS)
http://ac.nbutoj.com/Problem/view.xhtml?id=1479 [1479] How many 时间限制: 1000 ms 内存限制: 65535 K 问题描述 The ...
- HDU 1011 树形背包(DP) Starship Troopers
题目链接: HDU 1011 树形背包(DP) Starship Troopers 题意: 地图中有一些房间, 每个房间有一定的bugs和得到brains的可能性值, 一个人带领m支军队从入口(房 ...
- BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )
题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i, ...
随机推荐
- Social GAN代码要点记录
近日在阅读Social GAN文献的实验代码,加深对模型的理解,发现源代码的工程化很强,也比较适合构建实验模型的学习,故细致阅读.下文是笔者阅读中一些要点总结,有关于pytorch,也有关于模型自身的 ...
- 判断单链表是否有环,并找出环的入口python
1.如何判断一个链表是否有环? 2.如果链表为存在环,如果找到环的入口点? 1.限制与要求 不允许修改链表结构. 时间复杂度O(n),空间复杂度O(1). 2.思考 2.1判断是否有环 如果链表有环, ...
- bugku-杂项 convert
打开题目文件,一大堆01码,用py转换成hex f=open("in.txt","r") print hex(int(str(f.read()),2)) f.c ...
- 在mysql中计算百分比
通过查找资料,得到了如下解决方法: 用到了concat()和left() 两个函数 1.CONCAT(str1,str2,...) 返回来自于参数连结的字符串.如果任何参数是NULL, 返回NULL. ...
- @EnableAutoConfiguration激活自动装配
给予上个例子,将WebConfiguration类上的@SpringBootApplication换成@EnableAutoConfiguration.启动并运行http://localhost:80 ...
- Neo4j--windows下安装neo4j
参考 https://www.cnblogs.com/ljhdo/archive/2017/05/19/5521577.html 安装包下载 https://neo4j.com/download-ce ...
- (2)MongoDB副本集自动故障转移全流程原理
前文我们搭建MongoDB三成员副本集,了解集群基本特性,今天我们围绕下图聊一聊背后的细节. 默认搭建的replica set均在主节点读写,辅助节点冗余部署,形成高可用和备份, 具备自动故障转移的能 ...
- (转载)Tomcat 报错 (The tomcat server configuration at /Servers/Tomcat v7.0 Server at localhost-config is mi)
错误如图所示: 目前对于这个错误的原因尚不清楚,目前只知道如何解决这个错误,等到以后知道了原因之后再更改此文. 原因猜测: 之前你的eclipse关联的tomcat由于某种原因出现了信息丢失,需要重新 ...
- vue表单选项框
选项框选的内容在下面显示 <!DOCTYPE html> <html lang="en"> <head> <meta charset=&q ...
- PAT Advanced 1086 Tree Traversals Again (25) [树的遍历]
题目 An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For exam ...