参考:

https://blog.csdn.net/zwqjoy/article/details/80493341

https://blog.csdn.net/u012735708/article/details/82769711

执行代码:

  1. # Naive LSTM to learn three-char window to one-char mapping
  2. import numpy
  3. from keras.models import Sequential
  4. from keras.layers import Dense
  5. from keras.layers import LSTM
  6. from keras.utils import np_utils
  7. # fix random seed for reproducibility
  8. numpy.random.seed(7)
  9. # define the raw dataset
  10. alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
  11. # create mapping of characters to integers (0-25) and the reverse
  12. char_to_int = dict((c, i) for i, c in enumerate(alphabet))
  13. int_to_char = dict((i, c) for i, c in enumerate(alphabet))
  14. # prepare the dataset of input to output pairs encoded as integers
  15. seq_length = 3
  16. dataX = []
  17. dataY = []
  18. for i in range(0, len(alphabet) - seq_length, 1):
  19. seq_in = alphabet[i:i + seq_length]
  20. seq_out = alphabet[i + seq_length]
  21. dataX.append([char_to_int[char] for char in seq_in])
  22. dataY.append(char_to_int[seq_out])
  23. print(seq_in, '->', seq_out)
  24. # reshape X to be [samples, time steps, features]
  25. X = numpy.reshape(dataX, (len(dataX), 1, seq_length))
  26. # normalize
  27. X = X / float(len(alphabet))
  28. # one hot encode the output variable
  29. y = np_utils.to_categorical(dataY)
  30. # create and fit the model
  31. model = Sequential()
  32. model.add(LSTM(32, input_shape=(X.shape[1], X.shape[2])))
  33. model.add(Dense(y.shape[1], activation='softmax'))
  34. model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
  35. model.fit(X, y, epochs=500, batch_size=1, verbose=2)
  36. # summarize performance of the model
  37. scores = model.evaluate(X, y, verbose=0)
  38. print("Model Accuracy: %.2f%%" % (scores[1]*100))
  39. # demonstrate some model predictions
  40. for pattern in dataX:
  41. x = numpy.reshape(pattern, (1, 1, len(pattern)))
  42. x = x / float(len(alphabet))
  43. prediction = model.predict(x, verbose=0)
  44. index = numpy.argmax(prediction)
  45. result = int_to_char[index]
  46. seq_in = [int_to_char[value] for value in pattern]
  47. print(seq_in, "->", result)

返回信息:

  1. Using TensorFlow backend.
  2. ABC -> D
  3. BCD -> E
  4. CDE -> F
  5. DEF -> G
  6. EFG -> H
  7. FGH -> I
  8. GHI -> J
  9. HIJ -> K
  10. IJK -> L
  11. JKL -> M
  12. KLM -> N
  13. LMN -> O
  14. MNO -> P
  15. NOP -> Q
  16. OPQ -> R
  17. PQR -> S
  18. QRS -> T
  19. RST -> U
  20. STU -> V
  21. TUV -> W
  22. UVW -> X
  23. VWX -> Y
  24. WXY -> Z
  25. WARNING:tensorflow:From D:\ProgramData\Anaconda2\lib\site-packages\tensorflow\python\framework\op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
  26. Instructions for updating:
  27. Colocations handled automatically by placer.
  28. WARNING:tensorflow:From D:\ProgramData\Anaconda2\lib\site-packages\tensorflow\python\ops\math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
  29. Instructions for updating:
  30. Use tf.cast instead.
  31. Epoch 1/500
  32. - 8s - loss: 3.2651 - acc: 0.0000e+00
  33. Epoch 2/500
  34. - 0s - loss: 3.2527 - acc: 0.0435
  35. Epoch 3/500
  36. - 0s - loss: 3.2462 - acc: 0.0435
  37. Epoch 4/500
  38. - 0s - loss: 3.2402 - acc: 0.0000e+00
  39. Epoch 5/500
  40. - 0s - loss: 3.2339 - acc: 0.0435
  41. Epoch 6/500
  42. - 0s - loss: 3.2274 - acc: 0.0435
  43. Epoch 7/500
  44. - 0s - loss: 3.2209 - acc: 0.0435
  45. Epoch 8/500
  46. - 0s - loss: 3.2142 - acc: 0.0000e+00
  47. Epoch 9/500
  48. - 0s - loss: 3.2067 - acc: 0.0435
  49. Epoch 10/500
  50. - 0s - loss: 3.1993 - acc: 0.0435
  51. Epoch 11/500
  52. - 0s - loss: 3.1918 - acc: 0.0435
  53. Epoch 12/500
  54. - 0s - loss: 3.1839 - acc: 0.0000e+00
  55. Epoch 13/500
  56. - 0s - loss: 3.1756 - acc: 0.0435
  57. Epoch 14/500
  58. - 0s - loss: 3.1674 - acc: 0.0435
  59. Epoch 15/500
  60. - 0s - loss: 3.1586 - acc: 0.0000e+00
  61. Epoch 16/500
  62. - 0s - loss: 3.1498 - acc: 0.0435
  63. Epoch 17/500
  64. - 0s - loss: 3.1418 - acc: 0.0000e+00
  65. Epoch 18/500
  66. - 0s - loss: 3.1340 - acc: 0.0000e+00
  67. Epoch 19/500
  68. - 0s - loss: 3.1245 - acc: 0.0435
  69. Epoch 20/500
  70. - 0s - loss: 3.1167 - acc: 0.0435
  71. Epoch 21/500
  72. - 0s - loss: 3.1096 - acc: 0.0435
  73. Epoch 22/500
  74. - 0s - loss: 3.1018 - acc: 0.0435
  75. Epoch 23/500
  76. - 0s - loss: 3.0935 - acc: 0.0435
  77. Epoch 24/500
  78. - 0s - loss: 3.0857 - acc: 0.0435
  79. Epoch 25/500
  80. - 0s - loss: 3.0788 - acc: 0.0435
  81. Epoch 26/500
  82. - 0s - loss: 3.0721 - acc: 0.0435
  83. Epoch 27/500
  84. - 0s - loss: 3.0647 - acc: 0.0435
  85. Epoch 28/500
  86. - 0s - loss: 3.0584 - acc: 0.0435
  87. Epoch 29/500
  88. - 0s - loss: 3.0530 - acc: 0.0435
  89. Epoch 30/500
  90. - 0s - loss: 3.0449 - acc: 0.0435
  91. Epoch 31/500
  92. - 0s - loss: 3.0398 - acc: 0.0435
  93. Epoch 32/500
  94. - 0s - loss: 3.0328 - acc: 0.0870
  95. Epoch 33/500
  96. - 0s - loss: 3.0257 - acc: 0.0870
  97. Epoch 34/500
  98. - 0s - loss: 3.0200 - acc: 0.0870
  99. Epoch 35/500
  100. - 0s - loss: 3.0132 - acc: 0.0870
  101. Epoch 36/500
  102. - 0s - loss: 3.0077 - acc: 0.0870
  103. Epoch 37/500
  104. - 0s - loss: 2.9992 - acc: 0.0870
  105. Epoch 38/500
  106. - 0s - loss: 2.9946 - acc: 0.0870
  107. Epoch 39/500
  108. - 0s - loss: 2.9855 - acc: 0.0870
  109. Epoch 40/500
  110. - 0s - loss: 2.9790 - acc: 0.0870
  111. Epoch 41/500
  112. - 0s - loss: 2.9725 - acc: 0.0870
  113. Epoch 42/500
  114. - 0s - loss: 2.9655 - acc: 0.0870
  115. Epoch 43/500
  116. - 0s - loss: 2.9576 - acc: 0.0870
  117. Epoch 44/500
  118. - 0s - loss: 2.9501 - acc: 0.0870
  119. Epoch 45/500
  120. - 0s - loss: 2.9420 - acc: 0.0870
  121. Epoch 46/500
  122. - 0s - loss: 2.9353 - acc: 0.0870
  123. Epoch 47/500
  124. - 0s - loss: 2.9271 - acc: 0.0870
  125. Epoch 48/500
  126. - 0s - loss: 2.9193 - acc: 0.0870
  127. Epoch 49/500
  128. - 0s - loss: 2.9104 - acc: 0.0870
  129. Epoch 50/500
  130. - 0s - loss: 2.9012 - acc: 0.0870
  131. Epoch 51/500
  132. - 0s - loss: 2.8931 - acc: 0.0870
  133. Epoch 52/500
  134. - 0s - loss: 2.8841 - acc: 0.0870
  135. Epoch 53/500
  136. - 0s - loss: 2.8759 - acc: 0.0870
  137. Epoch 54/500
  138. - 0s - loss: 2.8653 - acc: 0.0870
  139. Epoch 55/500
  140. - 0s - loss: 2.8574 - acc: 0.0870
  141. Epoch 56/500
  142. - 0s - loss: 2.8467 - acc: 0.0870
  143. Epoch 57/500
  144. - 0s - loss: 2.8372 - acc: 0.0870
  145. Epoch 58/500
  146. - 0s - loss: 2.8272 - acc: 0.0870
  147. Epoch 59/500
  148. - 0s - loss: 2.8180 - acc: 0.0870
  149. Epoch 60/500
  150. - 0s - loss: 2.8074 - acc: 0.0870
  151. Epoch 61/500
  152. - 0s - loss: 2.7979 - acc: 0.0870
  153. Epoch 62/500
  154. - 0s - loss: 2.7865 - acc: 0.1304
  155. Epoch 63/500
  156. - 0s - loss: 2.7778 - acc: 0.1304
  157. Epoch 64/500
  158. - 0s - loss: 2.7675 - acc: 0.1304
  159. Epoch 65/500
  160. - 0s - loss: 2.7577 - acc: 0.0870
  161. Epoch 66/500
  162. - 0s - loss: 2.7471 - acc: 0.0870
  163. Epoch 67/500
  164. - 0s - loss: 2.7384 - acc: 0.0870
  165. Epoch 68/500
  166. - 0s - loss: 2.7288 - acc: 0.0870
  167. Epoch 69/500
  168. - 0s - loss: 2.7165 - acc: 0.0870
  169. Epoch 70/500
  170. - 0s - loss: 2.7084 - acc: 0.0870
  171. Epoch 71/500
  172. - 0s - loss: 2.6975 - acc: 0.0870
  173. Epoch 72/500
  174. - 0s - loss: 2.6891 - acc: 0.0870
  175. Epoch 73/500
  176. - 0s - loss: 2.6801 - acc: 0.0870
  177. Epoch 74/500
  178. - 0s - loss: 2.6708 - acc: 0.0870
  179. Epoch 75/500
  180. - 0s - loss: 2.6624 - acc: 0.0870
  181. Epoch 76/500
  182. - 0s - loss: 2.6537 - acc: 0.0870
  183. Epoch 77/500
  184. - 0s - loss: 2.6471 - acc: 0.0870
  185. Epoch 78/500
  186. - 0s - loss: 2.6378 - acc: 0.1304
  187. Epoch 79/500
  188. - 0s - loss: 2.6304 - acc: 0.1304
  189. Epoch 80/500
  190. - 0s - loss: 2.6220 - acc: 0.1304
  191. Epoch 81/500
  192. - 0s - loss: 2.6150 - acc: 0.1304
  193. Epoch 82/500
  194. - 0s - loss: 2.6070 - acc: 0.1304
  195. Epoch 83/500
  196. - 0s - loss: 2.6006 - acc: 0.1304
  197. Epoch 84/500
  198. - 0s - loss: 2.5950 - acc: 0.1304
  199. Epoch 85/500
  200. - 0s - loss: 2.5855 - acc: 0.0870
  201. Epoch 86/500
  202. - 0s - loss: 2.5784 - acc: 0.0870
  203. Epoch 87/500
  204. - 0s - loss: 2.5741 - acc: 0.0870
  205. Epoch 88/500
  206. - 0s - loss: 2.5655 - acc: 0.1304
  207. Epoch 89/500
  208. - 0s - loss: 2.5596 - acc: 0.0870
  209. Epoch 90/500
  210. - 0s - loss: 2.5528 - acc: 0.0870
  211. Epoch 91/500
  212. - 0s - loss: 2.5470 - acc: 0.1304
  213. Epoch 92/500
  214. - 0s - loss: 2.5402 - acc: 0.1304
  215. Epoch 93/500
  216. - 0s - loss: 2.5350 - acc: 0.1304
  217. Epoch 94/500
  218. - 0s - loss: 2.5291 - acc: 0.1304
  219. Epoch 95/500
  220. - 0s - loss: 2.5234 - acc: 0.1304
  221. Epoch 96/500
  222. - 0s - loss: 2.5174 - acc: 0.1304
  223. Epoch 97/500
  224. - 0s - loss: 2.5107 - acc: 0.1304
  225. Epoch 98/500
  226. - 0s - loss: 2.5043 - acc: 0.1304
  227. Epoch 99/500
  228. - 0s - loss: 2.4984 - acc: 0.1304
  229. Epoch 100/500
  230. - 0s - loss: 2.4939 - acc: 0.1304
  231. Epoch 101/500
  232. - 0s - loss: 2.4886 - acc: 0.1304
  233. Epoch 102/500
  234. - 0s - loss: 2.4820 - acc: 0.1304
  235. Epoch 103/500
  236. - 0s - loss: 2.4761 - acc: 0.1739
  237. Epoch 104/500
  238. - 0s - loss: 2.4696 - acc: 0.1739
  239. Epoch 105/500
  240. - 0s - loss: 2.4660 - acc: 0.1304
  241. Epoch 106/500
  242. - 0s - loss: 2.4610 - acc: 0.1304
  243. Epoch 107/500
  244. - 0s - loss: 2.4551 - acc: 0.1304
  245. Epoch 108/500
  246. - 0s - loss: 2.4498 - acc: 0.1304
  247. Epoch 109/500
  248. - 0s - loss: 2.4431 - acc: 0.1304
  249. Epoch 110/500
  250. - 0s - loss: 2.4387 - acc: 0.1739
  251. Epoch 111/500
  252. - 0s - loss: 2.4333 - acc: 0.1304
  253. Epoch 112/500
  254. - 0s - loss: 2.4270 - acc: 0.1304
  255. Epoch 113/500
  256. - 0s - loss: 2.4243 - acc: 0.1739
  257. Epoch 114/500
  258. - 0s - loss: 2.4161 - acc: 0.1304
  259. Epoch 115/500
  260. - 0s - loss: 2.4130 - acc: 0.1304
  261. Epoch 116/500
  262. - 0s - loss: 2.4078 - acc: 0.1739
  263. Epoch 117/500
  264. - 0s - loss: 2.4023 - acc: 0.1739
  265. Epoch 118/500
  266. - 0s - loss: 2.3974 - acc: 0.1304
  267. Epoch 119/500
  268. - 0s - loss: 2.3921 - acc: 0.2174
  269. Epoch 120/500
  270. - 0s - loss: 2.3869 - acc: 0.1304
  271. Epoch 121/500
  272. - 0s - loss: 2.3831 - acc: 0.1304
  273. Epoch 122/500
  274. - 0s - loss: 2.3777 - acc: 0.1739
  275. Epoch 123/500
  276. - 0s - loss: 2.3728 - acc: 0.2174
  277. Epoch 124/500
  278. - 0s - loss: 2.3682 - acc: 0.1739
  279. Epoch 125/500
  280. - 0s - loss: 2.3634 - acc: 0.1739
  281. Epoch 126/500
  282. - 0s - loss: 2.3586 - acc: 0.1739
  283. Epoch 127/500
  284. - 0s - loss: 2.3532 - acc: 0.1739
  285. Epoch 128/500
  286. - 0s - loss: 2.3482 - acc: 0.1739
  287. Epoch 129/500
  288. - 0s - loss: 2.3463 - acc: 0.2174
  289. Epoch 130/500
  290. - 0s - loss: 2.3414 - acc: 0.2174
  291. Epoch 131/500
  292. - 0s - loss: 2.3363 - acc: 0.2174
  293. Epoch 132/500
  294. - 0s - loss: 2.3322 - acc: 0.1739
  295. Epoch 133/500
  296. - 0s - loss: 2.3270 - acc: 0.2174
  297. Epoch 134/500
  298. - 0s - loss: 2.3238 - acc: 0.2174
  299. Epoch 135/500
  300. - 0s - loss: 2.3194 - acc: 0.2174
  301. Epoch 136/500
  302. - 0s - loss: 2.3152 - acc: 0.2174
  303. Epoch 137/500
  304. - 0s - loss: 2.3090 - acc: 0.2174
  305. Epoch 138/500
  306. - 0s - loss: 2.3051 - acc: 0.2174
  307. Epoch 139/500
  308. - 0s - loss: 2.3028 - acc: 0.2174
  309. Epoch 140/500
  310. - 0s - loss: 2.2952 - acc: 0.2174
  311. Epoch 141/500
  312. - 0s - loss: 2.2936 - acc: 0.2174
  313. Epoch 142/500
  314. - 0s - loss: 2.2890 - acc: 0.1739
  315. Epoch 143/500
  316. - 0s - loss: 2.2830 - acc: 0.1739
  317. Epoch 144/500
  318. - 0s - loss: 2.2797 - acc: 0.2174
  319. Epoch 145/500
  320. - 0s - loss: 2.2757 - acc: 0.2174
  321. Epoch 146/500
  322. - 0s - loss: 2.2710 - acc: 0.2174
  323. Epoch 147/500
  324. - 0s - loss: 2.2676 - acc: 0.2174
  325. Epoch 148/500
  326. - 0s - loss: 2.2635 - acc: 0.1739
  327. Epoch 149/500
  328. - 0s - loss: 2.2603 - acc: 0.2174
  329. Epoch 150/500
  330. - 0s - loss: 2.2570 - acc: 0.2174
  331. Epoch 151/500
  332. - 0s - loss: 2.2524 - acc: 0.2174
  333. Epoch 152/500
  334. - 0s - loss: 2.2483 - acc: 0.1739
  335. Epoch 153/500
  336. - 0s - loss: 2.2437 - acc: 0.2174
  337. Epoch 154/500
  338. - 0s - loss: 2.2409 - acc: 0.2174
  339. Epoch 155/500
  340. - 0s - loss: 2.2361 - acc: 0.1739
  341. Epoch 156/500
  342. - 0s - loss: 2.2345 - acc: 0.2174
  343. Epoch 157/500
  344. - 0s - loss: 2.2296 - acc: 0.2174
  345. Epoch 158/500
  346. - 0s - loss: 2.2252 - acc: 0.2174
  347. Epoch 159/500
  348. - 0s - loss: 2.2219 - acc: 0.2174
  349. Epoch 160/500
  350. - 0s - loss: 2.2190 - acc: 0.2174
  351. Epoch 161/500
  352. - 0s - loss: 2.2161 - acc: 0.2609
  353. Epoch 162/500
  354. - 0s - loss: 2.2119 - acc: 0.2609
  355. Epoch 163/500
  356. - 0s - loss: 2.2065 - acc: 0.2609
  357. Epoch 164/500
  358. - 0s - loss: 2.2046 - acc: 0.2609
  359. Epoch 165/500
  360. - 0s - loss: 2.2011 - acc: 0.2609
  361. Epoch 166/500
  362. - 0s - loss: 2.1987 - acc: 0.3043
  363. Epoch 167/500
  364. - 0s - loss: 2.1948 - acc: 0.2174
  365. Epoch 168/500
  366. - 0s - loss: 2.1914 - acc: 0.3043
  367. Epoch 169/500
  368. - 0s - loss: 2.1882 - acc: 0.2609
  369. Epoch 170/500
  370. - 0s - loss: 2.1863 - acc: 0.2609
  371. Epoch 171/500
  372. - 0s - loss: 2.1808 - acc: 0.2174
  373. Epoch 172/500
  374. - 0s - loss: 2.1779 - acc: 0.3478
  375. Epoch 173/500
  376. - 0s - loss: 2.1744 - acc: 0.3478
  377. Epoch 174/500
  378. - 0s - loss: 2.1736 - acc: 0.3478
  379. Epoch 175/500
  380. - 0s - loss: 2.1686 - acc: 0.3478
  381. Epoch 176/500
  382. - 0s - loss: 2.1652 - acc: 0.3043
  383. Epoch 177/500
  384. - 0s - loss: 2.1617 - acc: 0.2609
  385. Epoch 178/500
  386. - 0s - loss: 2.1613 - acc: 0.2609
  387. Epoch 179/500
  388. - 0s - loss: 2.1553 - acc: 0.3478
  389. Epoch 180/500
  390. - 0s - loss: 2.1534 - acc: 0.2609
  391. Epoch 181/500
  392. - 0s - loss: 2.1511 - acc: 0.2609
  393. Epoch 182/500
  394. - 0s - loss: 2.1477 - acc: 0.3043
  395. Epoch 183/500
  396. - 0s - loss: 2.1445 - acc: 0.2609
  397. Epoch 184/500
  398. - 0s - loss: 2.1416 - acc: 0.3913
  399. Epoch 185/500
  400. - 0s - loss: 2.1383 - acc: 0.3478
  401. Epoch 186/500
  402. - 0s - loss: 2.1366 - acc: 0.3478
  403. Epoch 187/500
  404. - 0s - loss: 2.1328 - acc: 0.3043
  405. Epoch 188/500
  406. - 0s - loss: 2.1317 - acc: 0.3043
  407. Epoch 189/500
  408. - 0s - loss: 2.1284 - acc: 0.3478
  409. Epoch 190/500
  410. - 0s - loss: 2.1242 - acc: 0.3478
  411. Epoch 191/500
  412. - 0s - loss: 2.1225 - acc: 0.3043
  413. Epoch 192/500
  414. - 0s - loss: 2.1178 - acc: 0.3043
  415. Epoch 193/500
  416. - 0s - loss: 2.1171 - acc: 0.2609
  417. Epoch 194/500
  418. - 0s - loss: 2.1141 - acc: 0.2609
  419. Epoch 195/500
  420. - 0s - loss: 2.1108 - acc: 0.3043
  421. Epoch 196/500
  422. - 0s - loss: 2.1100 - acc: 0.3478
  423. Epoch 197/500
  424. - 0s - loss: 2.1051 - acc: 0.3043
  425. Epoch 198/500
  426. - 0s - loss: 2.1025 - acc: 0.3478
  427. Epoch 199/500
  428. - 0s - loss: 2.1005 - acc: 0.3478
  429. Epoch 200/500
  430. - 0s - loss: 2.0982 - acc: 0.3478
  431. Epoch 201/500
  432. - 0s - loss: 2.0951 - acc: 0.3478
  433. Epoch 202/500
  434. - 0s - loss: 2.0926 - acc: 0.3043
  435. Epoch 203/500
  436. - 0s - loss: 2.0919 - acc: 0.3043
  437. Epoch 204/500
  438. - 0s - loss: 2.0876 - acc: 0.3478
  439. Epoch 205/500
  440. - 0s - loss: 2.0844 - acc: 0.3043
  441. Epoch 206/500
  442. - 0s - loss: 2.0838 - acc: 0.3043
  443. Epoch 207/500
  444. - 0s - loss: 2.0798 - acc: 0.3043
  445. Epoch 208/500
  446. - 0s - loss: 2.0777 - acc: 0.3478
  447. Epoch 209/500
  448. - 0s - loss: 2.0767 - acc: 0.3043
  449. Epoch 210/500
  450. - 0s - loss: 2.0723 - acc: 0.2609
  451. Epoch 211/500
  452. - 0s - loss: 2.0716 - acc: 0.3043
  453. Epoch 212/500
  454. - 0s - loss: 2.0690 - acc: 0.3043
  455. Epoch 213/500
  456. - 0s - loss: 2.0663 - acc: 0.3478
  457. Epoch 214/500
  458. - 0s - loss: 2.0632 - acc: 0.3913
  459. Epoch 215/500
  460. - 0s - loss: 2.0628 - acc: 0.3478
  461. Epoch 216/500
  462. - 0s - loss: 2.0603 - acc: 0.3478
  463. Epoch 217/500
  464. - 0s - loss: 2.0567 - acc: 0.3913
  465. Epoch 218/500
  466. - 0s - loss: 2.0559 - acc: 0.3913
  467. Epoch 219/500
  468. - 0s - loss: 2.0509 - acc: 0.3913
  469. Epoch 220/500
  470. - 0s - loss: 2.0499 - acc: 0.3043
  471. Epoch 221/500
  472. - 0s - loss: 2.0482 - acc: 0.3478
  473. Epoch 222/500
  474. - 0s - loss: 2.0439 - acc: 0.3478
  475. Epoch 223/500
  476. - 0s - loss: 2.0427 - acc: 0.3913
  477. Epoch 224/500
  478. - 0s - loss: 2.0404 - acc: 0.4348
  479. Epoch 225/500
  480. - 0s - loss: 2.0393 - acc: 0.3913
  481. Epoch 226/500
  482. - 0s - loss: 2.0379 - acc: 0.4348
  483. Epoch 227/500
  484. - 0s - loss: 2.0360 - acc: 0.4348
  485. Epoch 228/500
  486. - 0s - loss: 2.0330 - acc: 0.4348
  487. Epoch 229/500
  488. - 0s - loss: 2.0307 - acc: 0.4348
  489. Epoch 230/500
  490. - 0s - loss: 2.0269 - acc: 0.4783
  491. Epoch 231/500
  492. - 0s - loss: 2.0251 - acc: 0.3913
  493. Epoch 232/500
  494. - 0s - loss: 2.0234 - acc: 0.4783
  495. Epoch 233/500
  496. - 0s - loss: 2.0222 - acc: 0.4348
  497. Epoch 234/500
  498. - 0s - loss: 2.0190 - acc: 0.4783
  499. Epoch 235/500
  500. - 0s - loss: 2.0175 - acc: 0.5652
  501. Epoch 236/500
  502. - 0s - loss: 2.0161 - acc: 0.4783
  503. Epoch 237/500
  504. - 0s - loss: 2.0133 - acc: 0.4348
  505. Epoch 238/500
  506. - 0s - loss: 2.0097 - acc: 0.4348
  507. Epoch 239/500
  508. - 0s - loss: 2.0094 - acc: 0.3913
  509. Epoch 240/500
  510. - 0s - loss: 2.0077 - acc: 0.4783
  511. Epoch 241/500
  512. - 0s - loss: 2.0048 - acc: 0.4348
  513. Epoch 242/500
  514. - 0s - loss: 2.0028 - acc: 0.4348
  515. Epoch 243/500
  516. - 0s - loss: 2.0002 - acc: 0.4348
  517. Epoch 244/500
  518. - 0s - loss: 1.9974 - acc: 0.4348
  519. Epoch 245/500
  520. - 0s - loss: 1.9958 - acc: 0.4783
  521. Epoch 246/500
  522. - 0s - loss: 1.9956 - acc: 0.4348
  523. Epoch 247/500
  524. - 0s - loss: 1.9929 - acc: 0.4783
  525. Epoch 248/500
  526. - 0s - loss: 1.9916 - acc: 0.4783
  527. Epoch 249/500
  528. - 0s - loss: 1.9888 - acc: 0.5652
  529. Epoch 250/500
  530. - 0s - loss: 1.9895 - acc: 0.5217
  531. Epoch 251/500
  532. - 0s - loss: 1.9838 - acc: 0.4348
  533. Epoch 252/500
  534. - 0s - loss: 1.9840 - acc: 0.4348
  535. Epoch 253/500
  536. - 0s - loss: 1.9814 - acc: 0.5652
  537. Epoch 254/500
  538. - 0s - loss: 1.9812 - acc: 0.4783
  539. Epoch 255/500
  540. - 0s - loss: 1.9768 - acc: 0.5217
  541. Epoch 256/500
  542. - 0s - loss: 1.9759 - acc: 0.4348
  543. Epoch 257/500
  544. - 0s - loss: 1.9741 - acc: 0.4783
  545. Epoch 258/500
  546. - 0s - loss: 1.9703 - acc: 0.5652
  547. Epoch 259/500
  548. - 0s - loss: 1.9713 - acc: 0.4348
  549. Epoch 260/500
  550. - 0s - loss: 1.9653 - acc: 0.5217
  551. Epoch 261/500
  552. - 0s - loss: 1.9658 - acc: 0.5217
  553. Epoch 262/500
  554. - 0s - loss: 1.9624 - acc: 0.5652
  555. Epoch 263/500
  556. - 0s - loss: 1.9614 - acc: 0.5217
  557. Epoch 264/500
  558. - 0s - loss: 1.9632 - acc: 0.5217
  559. Epoch 265/500
  560. - 0s - loss: 1.9588 - acc: 0.5217
  561. Epoch 266/500
  562. - 0s - loss: 1.9556 - acc: 0.5217
  563. Epoch 267/500
  564. - 0s - loss: 1.9556 - acc: 0.5217
  565. Epoch 268/500
  566. - 0s - loss: 1.9511 - acc: 0.5217
  567. Epoch 269/500
  568. - 0s - loss: 1.9522 - acc: 0.5652
  569. Epoch 270/500
  570. - 0s - loss: 1.9502 - acc: 0.5652
  571. Epoch 271/500
  572. - 0s - loss: 1.9494 - acc: 0.5652
  573. Epoch 272/500
  574. - 0s - loss: 1.9450 - acc: 0.5652
  575. Epoch 273/500
  576. - 0s - loss: 1.9455 - acc: 0.5217
  577. Epoch 274/500
  578. - 0s - loss: 1.9446 - acc: 0.3913
  579. Epoch 275/500
  580. - 0s - loss: 1.9406 - acc: 0.4783
  581. Epoch 276/500
  582. - 0s - loss: 1.9392 - acc: 0.4783
  583. Epoch 277/500
  584. - 0s - loss: 1.9353 - acc: 0.5652
  585. Epoch 278/500
  586. - 0s - loss: 1.9356 - acc: 0.4348
  587. Epoch 279/500
  588. - 0s - loss: 1.9355 - acc: 0.6087
  589. Epoch 280/500
  590. - 0s - loss: 1.9345 - acc: 0.5652
  591. Epoch 281/500
  592. - 0s - loss: 1.9291 - acc: 0.6087
  593. Epoch 282/500
  594. - 0s - loss: 1.9311 - acc: 0.6087
  595. Epoch 283/500
  596. - 0s - loss: 1.9298 - acc: 0.4783
  597. Epoch 284/500
  598. - 0s - loss: 1.9264 - acc: 0.5217
  599. Epoch 285/500
  600. - 0s - loss: 1.9245 - acc: 0.6087
  601. Epoch 286/500
  602. - 0s - loss: 1.9233 - acc: 0.5652
  603. Epoch 287/500
  604. - 0s - loss: 1.9217 - acc: 0.4783
  605. Epoch 288/500
  606. - 0s - loss: 1.9193 - acc: 0.5217
  607. Epoch 289/500
  608. - 0s - loss: 1.9149 - acc: 0.5217
  609. Epoch 290/500
  610. - 0s - loss: 1.9153 - acc: 0.5217
  611. Epoch 291/500
  612. - 0s - loss: 1.9128 - acc: 0.6087
  613. Epoch 292/500
  614. - 0s - loss: 1.9112 - acc: 0.6957
  615. Epoch 293/500
  616. - 0s - loss: 1.9112 - acc: 0.6087
  617. Epoch 294/500
  618. - 0s - loss: 1.9095 - acc: 0.6087
  619. Epoch 295/500
  620. - 0s - loss: 1.9077 - acc: 0.5652
  621. Epoch 296/500
  622. - 0s - loss: 1.9059 - acc: 0.6087
  623. Epoch 297/500
  624. - 0s - loss: 1.9054 - acc: 0.6522
  625. Epoch 298/500
  626. - 0s - loss: 1.9045 - acc: 0.6087
  627. Epoch 299/500
  628. - 0s - loss: 1.9010 - acc: 0.6522
  629. Epoch 300/500
  630. - 0s - loss: 1.8994 - acc: 0.5217
  631. Epoch 301/500
  632. - 0s - loss: 1.8975 - acc: 0.4348
  633. Epoch 302/500
  634. - 0s - loss: 1.8957 - acc: 0.5652
  635. Epoch 303/500
  636. - 0s - loss: 1.8956 - acc: 0.6087
  637. Epoch 304/500
  638. - 0s - loss: 1.8962 - acc: 0.4783
  639. Epoch 305/500
  640. - 0s - loss: 1.8935 - acc: 0.5217
  641. Epoch 306/500
  642. - 0s - loss: 1.8892 - acc: 0.5652
  643. Epoch 307/500
  644. - 0s - loss: 1.8881 - acc: 0.6087
  645. Epoch 308/500
  646. - 0s - loss: 1.8867 - acc: 0.5652
  647. Epoch 309/500
  648. - 0s - loss: 1.8869 - acc: 0.5652
  649. Epoch 310/500
  650. - 0s - loss: 1.8837 - acc: 0.6087
  651. Epoch 311/500
  652. - 0s - loss: 1.8825 - acc: 0.6522
  653. Epoch 312/500
  654. - 0s - loss: 1.8791 - acc: 0.5217
  655. Epoch 313/500
  656. - 0s - loss: 1.8790 - acc: 0.6087
  657. Epoch 314/500
  658. - 0s - loss: 1.8771 - acc: 0.6087
  659. Epoch 315/500
  660. - 0s - loss: 1.8766 - acc: 0.6087
  661. Epoch 316/500
  662. - 0s - loss: 1.8746 - acc: 0.5652
  663. Epoch 317/500
  664. - 0s - loss: 1.8720 - acc: 0.5652
  665. Epoch 318/500
  666. - 0s - loss: 1.8711 - acc: 0.6087
  667. Epoch 319/500
  668. - 0s - loss: 1.8699 - acc: 0.5652
  669. Epoch 320/500
  670. - 0s - loss: 1.8688 - acc: 0.4783
  671. Epoch 321/500
  672. - 0s - loss: 1.8674 - acc: 0.5652
  673. Epoch 322/500
  674. - 0s - loss: 1.8677 - acc: 0.5652
  675. Epoch 323/500
  676. - 0s - loss: 1.8627 - acc: 0.5217
  677. Epoch 324/500
  678. - 0s - loss: 1.8636 - acc: 0.6087
  679. Epoch 325/500
  680. - 0s - loss: 1.8623 - acc: 0.6522
  681. Epoch 326/500
  682. - 0s - loss: 1.8608 - acc: 0.5217
  683. Epoch 327/500
  684. - 0s - loss: 1.8619 - acc: 0.6522
  685. Epoch 328/500
  686. - 0s - loss: 1.8582 - acc: 0.6087
  687. Epoch 329/500
  688. - 0s - loss: 1.8554 - acc: 0.5652
  689. Epoch 330/500
  690. - 0s - loss: 1.8540 - acc: 0.6522
  691. Epoch 331/500
  692. - 0s - loss: 1.8567 - acc: 0.5652
  693. Epoch 332/500
  694. - 0s - loss: 1.8520 - acc: 0.5652
  695. Epoch 333/500
  696. - 0s - loss: 1.8515 - acc: 0.6522
  697. Epoch 334/500
  698. - 0s - loss: 1.8484 - acc: 0.6087
  699. Epoch 335/500
  700. - 0s - loss: 1.8498 - acc: 0.6087
  701. Epoch 336/500
  702. - 0s - loss: 1.8451 - acc: 0.6522
  703. Epoch 337/500
  704. - 0s - loss: 1.8434 - acc: 0.6522
  705. Epoch 338/500
  706. - 0s - loss: 1.8431 - acc: 0.5217
  707. Epoch 339/500
  708. - 0s - loss: 1.8418 - acc: 0.6087
  709. Epoch 340/500
  710. - 0s - loss: 1.8410 - acc: 0.5217
  711. Epoch 341/500
  712. - 0s - loss: 1.8395 - acc: 0.6522
  713. Epoch 342/500
  714. - 0s - loss: 1.8392 - acc: 0.6087
  715. Epoch 343/500
  716. - 0s - loss: 1.8362 - acc: 0.5652
  717. Epoch 344/500
  718. - 0s - loss: 1.8336 - acc: 0.6087
  719. Epoch 345/500
  720. - 0s - loss: 1.8320 - acc: 0.6087
  721. Epoch 346/500
  722. - 0s - loss: 1.8316 - acc: 0.6522
  723. Epoch 347/500
  724. - 0s - loss: 1.8325 - acc: 0.5652
  725. Epoch 348/500
  726. - 0s - loss: 1.8284 - acc: 0.5652
  727. Epoch 349/500
  728. - 0s - loss: 1.8278 - acc: 0.6087
  729. Epoch 350/500
  730. - 0s - loss: 1.8263 - acc: 0.6087
  731. Epoch 351/500
  732. - 0s - loss: 1.8234 - acc: 0.5217
  733. Epoch 352/500
  734. - 0s - loss: 1.8244 - acc: 0.6087
  735. Epoch 353/500
  736. - 0s - loss: 1.8224 - acc: 0.6522
  737. Epoch 354/500
  738. - 0s - loss: 1.8208 - acc: 0.6522
  739. Epoch 355/500
  740. - 0s - loss: 1.8225 - acc: 0.6522
  741. Epoch 356/500
  742. - 0s - loss: 1.8181 - acc: 0.6522
  743. Epoch 357/500
  744. - 0s - loss: 1.8170 - acc: 0.5217
  745. Epoch 358/500
  746. - 0s - loss: 1.8182 - acc: 0.6522
  747. Epoch 359/500
  748. - 0s - loss: 1.8146 - acc: 0.5652
  749. Epoch 360/500
  750. - 0s - loss: 1.8114 - acc: 0.6957
  751. Epoch 361/500
  752. - 0s - loss: 1.8111 - acc: 0.7391
  753. Epoch 362/500
  754. - 0s - loss: 1.8091 - acc: 0.6522
  755. Epoch 363/500
  756. - 0s - loss: 1.8096 - acc: 0.5652
  757. Epoch 364/500
  758. - 0s - loss: 1.8078 - acc: 0.6087
  759. Epoch 365/500
  760. - 0s - loss: 1.8069 - acc: 0.5652
  761. Epoch 366/500
  762. - 0s - loss: 1.8060 - acc: 0.6522
  763. Epoch 367/500
  764. - 0s - loss: 1.8041 - acc: 0.6087
  765. Epoch 368/500
  766. - 0s - loss: 1.8021 - acc: 0.6957
  767. Epoch 369/500
  768. - 0s - loss: 1.8003 - acc: 0.6957
  769. Epoch 370/500
  770. - 0s - loss: 1.8004 - acc: 0.6957
  771. Epoch 371/500
  772. - 0s - loss: 1.7980 - acc: 0.5652
  773. Epoch 372/500
  774. - 0s - loss: 1.7977 - acc: 0.6522
  775. Epoch 373/500
  776. - 0s - loss: 1.7946 - acc: 0.6957
  777. Epoch 374/500
  778. - 0s - loss: 1.7930 - acc: 0.6957
  779. Epoch 375/500
  780. - 0s - loss: 1.7939 - acc: 0.6957
  781. Epoch 376/500
  782. - 0s - loss: 1.7907 - acc: 0.6087
  783. Epoch 377/500
  784. - 0s - loss: 1.7892 - acc: 0.6522
  785. Epoch 378/500
  786. - 0s - loss: 1.7899 - acc: 0.6087
  787. Epoch 379/500
  788. - 0s - loss: 1.7861 - acc: 0.6522
  789. Epoch 380/500
  790. - 0s - loss: 1.7871 - acc: 0.6522
  791. Epoch 381/500
  792. - 0s - loss: 1.7870 - acc: 0.6087
  793. Epoch 382/500
  794. - 0s - loss: 1.7850 - acc: 0.7391
  795. Epoch 383/500
  796. - 0s - loss: 1.7811 - acc: 0.6957
  797. Epoch 384/500
  798. - 0s - loss: 1.7812 - acc: 0.6522
  799. Epoch 385/500
  800. - 0s - loss: 1.7824 - acc: 0.7391
  801. Epoch 386/500
  802. - 0s - loss: 1.7790 - acc: 0.6522
  803. Epoch 387/500
  804. - 0s - loss: 1.7762 - acc: 0.6957
  805. Epoch 388/500
  806. - 0s - loss: 1.7761 - acc: 0.7826
  807. Epoch 389/500
  808. - 0s - loss: 1.7763 - acc: 0.6957
  809. Epoch 390/500
  810. - 0s - loss: 1.7740 - acc: 0.6957
  811. Epoch 391/500
  812. - 0s - loss: 1.7719 - acc: 0.6957
  813. Epoch 392/500
  814. - 0s - loss: 1.7698 - acc: 0.6957
  815. Epoch 393/500
  816. - 0s - loss: 1.7712 - acc: 0.6522
  817. Epoch 394/500
  818. - 0s - loss: 1.7673 - acc: 0.6522
  819. Epoch 395/500
  820. - 0s - loss: 1.7690 - acc: 0.6957
  821. Epoch 396/500
  822. - 0s - loss: 1.7659 - acc: 0.6522
  823. Epoch 397/500
  824. - 0s - loss: 1.7666 - acc: 0.6087
  825. Epoch 398/500
  826. - 0s - loss: 1.7657 - acc: 0.6087
  827. Epoch 399/500
  828. - 0s - loss: 1.7630 - acc: 0.6957
  829. Epoch 400/500
  830. - 0s - loss: 1.7623 - acc: 0.6522
  831. Epoch 401/500
  832. - 0s - loss: 1.7604 - acc: 0.6957
  833. Epoch 402/500
  834. - 0s - loss: 1.7576 - acc: 0.7391
  835. Epoch 403/500
  836. - 0s - loss: 1.7580 - acc: 0.6522
  837. Epoch 404/500
  838. - 0s - loss: 1.7584 - acc: 0.6957
  839. Epoch 405/500
  840. - 0s - loss: 1.7561 - acc: 0.6522
  841. Epoch 406/500
  842. - 0s - loss: 1.7555 - acc: 0.6522
  843. Epoch 407/500
  844. - 0s - loss: 1.7526 - acc: 0.8261
  845. Epoch 408/500
  846. - 0s - loss: 1.7531 - acc: 0.6957
  847. Epoch 409/500
  848. - 0s - loss: 1.7507 - acc: 0.6957
  849. Epoch 410/500
  850. - 0s - loss: 1.7508 - acc: 0.7391
  851. Epoch 411/500
  852. - 0s - loss: 1.7495 - acc: 0.6957
  853. Epoch 412/500
  854. - 0s - loss: 1.7495 - acc: 0.7391
  855. Epoch 413/500
  856. - 0s - loss: 1.7469 - acc: 0.6957
  857. Epoch 414/500
  858. - 0s - loss: 1.7459 - acc: 0.6522
  859. Epoch 415/500
  860. - 0s - loss: 1.7434 - acc: 0.6957
  861. Epoch 416/500
  862. - 0s - loss: 1.7414 - acc: 0.6522
  863. Epoch 417/500
  864. - 0s - loss: 1.7393 - acc: 0.6957
  865. Epoch 418/500
  866. - 0s - loss: 1.7383 - acc: 0.6522
  867. Epoch 419/500
  868. - 0s - loss: 1.7388 - acc: 0.6957
  869. Epoch 420/500
  870. - 0s - loss: 1.7389 - acc: 0.6087
  871. Epoch 421/500
  872. - 0s - loss: 1.7379 - acc: 0.6957
  873. Epoch 422/500
  874. - 0s - loss: 1.7335 - acc: 0.6957
  875. Epoch 423/500
  876. - 0s - loss: 1.7331 - acc: 0.7391
  877. Epoch 424/500
  878. - 0s - loss: 1.7339 - acc: 0.6957
  879. Epoch 425/500
  880. - 0s - loss: 1.7338 - acc: 0.7391
  881. Epoch 426/500
  882. - 0s - loss: 1.7303 - acc: 0.6957
  883. Epoch 427/500
  884. - 0s - loss: 1.7278 - acc: 0.7826
  885. Epoch 428/500
  886. - 0s - loss: 1.7274 - acc: 0.6522
  887. Epoch 429/500
  888. - 0s - loss: 1.7277 - acc: 0.7391
  889. Epoch 430/500
  890. - 0s - loss: 1.7264 - acc: 0.6957
  891. Epoch 431/500
  892. - 0s - loss: 1.7249 - acc: 0.6522
  893. Epoch 432/500
  894. - 0s - loss: 1.7245 - acc: 0.6522
  895. Epoch 433/500
  896. - 0s - loss: 1.7202 - acc: 0.7391
  897. Epoch 434/500
  898. - 0s - loss: 1.7201 - acc: 0.6522
  899. Epoch 435/500
  900. - 0s - loss: 1.7186 - acc: 0.7391
  901. Epoch 436/500
  902. - 0s - loss: 1.7177 - acc: 0.8261
  903. Epoch 437/500
  904. - 0s - loss: 1.7187 - acc: 0.7391
  905. Epoch 438/500
  906. - 0s - loss: 1.7170 - acc: 0.7391
  907. Epoch 439/500
  908. - 0s - loss: 1.7148 - acc: 0.7391
  909. Epoch 440/500
  910. - 0s - loss: 1.7130 - acc: 0.6957
  911. Epoch 441/500
  912. - 0s - loss: 1.7140 - acc: 0.8261
  913. Epoch 442/500
  914. - 0s - loss: 1.7124 - acc: 0.7826
  915. Epoch 443/500
  916. - 0s - loss: 1.7077 - acc: 0.7826
  917. Epoch 444/500
  918. - 0s - loss: 1.7108 - acc: 0.6957
  919. Epoch 445/500
  920. - 0s - loss: 1.7080 - acc: 0.7391
  921. Epoch 446/500
  922. - 0s - loss: 1.7068 - acc: 0.7391
  923. Epoch 447/500
  924. - 0s - loss: 1.7061 - acc: 0.6522
  925. Epoch 448/500
  926. - 0s - loss: 1.7056 - acc: 0.6957
  927. Epoch 449/500
  928. - 0s - loss: 1.7052 - acc: 0.6957
  929. Epoch 450/500
  930. - 0s - loss: 1.7015 - acc: 0.7391
  931. Epoch 451/500
  932. - 0s - loss: 1.7008 - acc: 0.7391
  933. Epoch 452/500
  934. - 0s - loss: 1.6998 - acc: 0.6957
  935. Epoch 453/500
  936. - 0s - loss: 1.7005 - acc: 0.7391
  937. Epoch 454/500
  938. - 0s - loss: 1.6990 - acc: 0.7826
  939. Epoch 455/500
  940. - 0s - loss: 1.6948 - acc: 0.6957
  941. Epoch 456/500
  942. - 0s - loss: 1.6984 - acc: 0.8261
  943. Epoch 457/500
  944. - 0s - loss: 1.6917 - acc: 0.7826
  945. Epoch 458/500
  946. - 0s - loss: 1.6947 - acc: 0.6087
  947. Epoch 459/500
  948. - 0s - loss: 1.6923 - acc: 0.7826
  949. Epoch 460/500
  950. - 0s - loss: 1.6934 - acc: 0.7391
  951. Epoch 461/500
  952. - 0s - loss: 1.6918 - acc: 0.7391
  953. Epoch 462/500
  954. - 0s - loss: 1.6893 - acc: 0.7391
  955. Epoch 463/500
  956. - 0s - loss: 1.6865 - acc: 0.6957
  957. Epoch 464/500
  958. - 0s - loss: 1.6843 - acc: 0.6957
  959. Epoch 465/500
  960. - 0s - loss: 1.6856 - acc: 0.7391
  961. Epoch 466/500
  962. - 0s - loss: 1.6861 - acc: 0.7391
  963. Epoch 467/500
  964. - 0s - loss: 1.6828 - acc: 0.7826
  965. Epoch 468/500
  966. - 0s - loss: 1.6819 - acc: 0.7826
  967. Epoch 469/500
  968. - 0s - loss: 1.6800 - acc: 0.8261
  969. Epoch 470/500
  970. - 0s - loss: 1.6785 - acc: 0.7826
  971. Epoch 471/500
  972. - 0s - loss: 1.6795 - acc: 0.8261
  973. Epoch 472/500
  974. - 0s - loss: 1.6761 - acc: 0.7391
  975. Epoch 473/500
  976. - 0s - loss: 1.6770 - acc: 0.8261
  977. Epoch 474/500
  978. - 0s - loss: 1.6755 - acc: 0.8261
  979. Epoch 475/500
  980. - 0s - loss: 1.6722 - acc: 0.7826
  981. Epoch 476/500
  982. - 0s - loss: 1.6703 - acc: 0.7826
  983. Epoch 477/500
  984. - 0s - loss: 1.6705 - acc: 0.7391
  985. Epoch 478/500
  986. - 0s - loss: 1.6700 - acc: 0.7826
  987. Epoch 479/500
  988. - 0s - loss: 1.6676 - acc: 0.8696
  989. Epoch 480/500
  990. - 0s - loss: 1.6700 - acc: 0.7826
  991. Epoch 481/500
  992. - 0s - loss: 1.6695 - acc: 0.7826
  993. Epoch 482/500
  994. - 0s - loss: 1.6668 - acc: 0.6957
  995. Epoch 483/500
  996. - 0s - loss: 1.6669 - acc: 0.7391
  997. Epoch 484/500
  998. - 0s - loss: 1.6657 - acc: 0.6957
  999. Epoch 485/500
  1000. - 0s - loss: 1.6640 - acc: 0.7391
  1001. Epoch 486/500
  1002. - 0s - loss: 1.6613 - acc: 0.7391
  1003. Epoch 487/500
  1004. - 0s - loss: 1.6623 - acc: 0.7826
  1005. Epoch 488/500
  1006. - 0s - loss: 1.6612 - acc: 0.6957
  1007. Epoch 489/500
  1008. - 0s - loss: 1.6574 - acc: 0.7391
  1009. Epoch 490/500
  1010. - 0s - loss: 1.6580 - acc: 0.7826
  1011. Epoch 491/500
  1012. - 0s - loss: 1.6575 - acc: 0.7826
  1013. Epoch 492/500
  1014. - 0s - loss: 1.6556 - acc: 0.8261
  1015. Epoch 493/500
  1016. - 0s - loss: 1.6568 - acc: 0.7391
  1017. Epoch 494/500
  1018. - 0s - loss: 1.6551 - acc: 0.7391
  1019. Epoch 495/500
  1020. - 0s - loss: 1.6500 - acc: 0.8261
  1021. Epoch 496/500
  1022. - 0s - loss: 1.6521 - acc: 0.7391
  1023. Epoch 497/500
  1024. - 0s - loss: 1.6502 - acc: 0.7391
  1025. Epoch 498/500
  1026. - 0s - loss: 1.6516 - acc: 0.8261
  1027. Epoch 499/500
  1028. - 0s - loss: 1.6491 - acc: 0.7826
  1029. Epoch 500/500
  1030. - 0s - loss: 1.6453 - acc: 0.7826
  1031. Model Accuracy: 86.96%
  1032. ['A', 'B', 'C'] -> D
  1033. ['B', 'C', 'D'] -> E
  1034. ['C', 'D', 'E'] -> F
  1035. ['D', 'E', 'F'] -> G
  1036. ['E', 'F', 'G'] -> H
  1037. ['F', 'G', 'H'] -> I
  1038. ['G', 'H', 'I'] -> J
  1039. ['H', 'I', 'J'] -> K
  1040. ['I', 'J', 'K'] -> L
  1041. ['J', 'K', 'L'] -> M
  1042. ['K', 'L', 'M'] -> N
  1043. ['L', 'M', 'N'] -> O
  1044. ['M', 'N', 'O'] -> P
  1045. ['N', 'O', 'P'] -> Q
  1046. ['O', 'P', 'Q'] -> R
  1047. ['P', 'Q', 'R'] -> S
  1048. ['Q', 'R', 'S'] -> T
  1049. ['R', 'S', 'T'] -> U
  1050. ['S', 'T', 'U'] -> V
  1051. ['T', 'U', 'V'] -> X
  1052. ['U', 'V', 'W'] -> Z
  1053. ['V', 'W', 'X'] -> Z
  1054. ['W', 'X', 'Y'] -> Z

Keras入门——(4)长短期记忆网络LSTM(一)的更多相关文章

  1. 如何预测股票分析--长短期记忆网络(LSTM)

    在上一篇中,我们回顾了先知的方法,但是在这个案例中表现也不是特别突出,今天介绍的是著名的l s t m算法,在时间序列中解决了传统r n n算法梯度消失问题的的它这一次还会有令人杰出的表现吗? 长短期 ...

  2. Keras入门——(7)长短期记忆网络LSTM(四)

    数据准备:http://www.manythings.org/anki/cmn-eng.zip 源代码:https://github.com/pjgao/seq2seq_keras 参考:https: ...

  3. Keras入门——(6)长短期记忆网络LSTM(三)

    参考: https://blog.csdn.net/u012735708/article/details/82769711 https://zybuluo.com/hanbingtao/note/58 ...

  4. Keras入门——(5)长短期记忆网络LSTM(二)

    参考: https://blog.csdn.net/zwqjoy/article/details/80493341 https://blog.csdn.net/u012735708/article/d ...

  5. 递归神经网络之理解长短期记忆网络(LSTM NetWorks)(转载)

    递归神经网络 人类并不是每时每刻都从头开始思考.正如你阅读这篇文章的时候,你是在理解前面词语的基础上来理解每个词.你不会丢弃所有已知的信息而从头开始思考.你的思想具有持续性. 传统的神经网络不能做到这 ...

  6. 理解长短期记忆网络(LSTM NetWorks)

    转自:http://www.csdn.net/article/2015-11-25/2826323 原文链接:Understanding LSTM Networks(译者/刘翔宇 审校/赵屹华 责编/ ...

  7. LSTM - 长短期记忆网络

    循环神经网络(RNN) 人们不是每一秒都从头开始思考,就像你阅读本文时,不会从头去重新学习一个文字,人类的思维是有持续性的.传统的卷积神经网络没有记忆,不能解决这一个问题,循环神经网络(Recurre ...

  8. LSTMs 长短期记忆网络系列

    RNN的长期依赖问题 什么是长期依赖? 长期依赖是指当前系统的状态,可能受很长时间之前系统状态的影响,是RNN中无法解决的一个问题. 如果从(1) “ 这块冰糖味道真?”来预测下一个词,是很容易得出“ ...

  9. Long-Short Memory Network(LSTM长短期记忆网络)

    自剪枝神经网络 Simple RNN从理论上来看,具有全局记忆能力,因为T时刻,递归隐层一定记录着时序为1的状态 但由于Gradient Vanish问题,T时刻向前反向传播的Gradient在T-1 ...

随机推荐

  1. stl_string复习

    #include <iostream>#include <string>#include <algorithm>using namespace std; void ...

  2. C:char类型

    char字符类型 字符型变量用于存储一个单一字符,在 C 语言中用 char 表示,其中每个字符变量都会占用 1 个字节.在给字符型变量赋值时,需要用一对英文半角格式的单引号(' ')把字符括起来. ...

  3. 【渗透测试】MS17-010 "永恒之蓝" 修复方案

    多所院校电脑被勒索,吾等当代大学生怎能坐视不管. --------------------------------------------------------------------------- ...

  4. IDEA中常用优化设置

    1.设置鼠标悬浮提示 Editor->General 这里要勾选下,后面设置的是延迟时间 默认半秒:设置后,我们鼠标移动到类上看看: 2.显示方法分隔符 Editor->General - ...

  5. 基础总结篇之七:ContentProvider之读写短消息

    转自:http://blog.csdn.net/wellsoho/article/details/49494167 今天我们来讲一下如何利用ContentProvider读写短消息. 上次我们讲了如何 ...

  6. 洛谷 P1082 同余方程(同余&&exgcd)

    嗯... 题目链接:https://www.luogu.org/problem/P1082 这道题很明显涉及到了同余和exgcd的问题,下面推导一下: 首先证明有解情况: ax + by = m有解的 ...

  7. jquery中 $(xxx).each() 和 $.each()的区别,以及enter键一键登录

    1.$().each 在dom处理上面用的较多.如果页面有多个input标签类型为text,对于这时用$().each来处理多个text,例如: $("input[type=’text’]& ...

  8. 洛谷P1301 魔鬼之城 题解

    想找原题请点击这里:传送门 题目描述 在一个被分割为N*M个正方形房间的矩形魔鬼之城中,一个探险者必须遵循下列规则才能跳跃行动.他必须从(, )进入,从(N, M)走出:在每一房间的墙壁上都写了一个魔 ...

  9. 启动named服务报错!

    安装及配置bind服务程序: yum -y install bind 三个关键文件: 主配置文件(/etc/named.conf) 区域配置文件(/etc/named.rfc1912.zones) 数 ...

  10. https和http的主要区别

    HTTPS和HTTP的区别主要如下: 1.https协议需要到ca申请证书,一般免费证书较少,因而需要一定费用. 2.http是超文本传输协议,信息是明文传输,https则是具有安全性的ssl加密传输 ...