1.概述

回归树就是用树模型做回归问题,每一片叶子都输出一个预测值。预测值一般是该片叶子所含训练集元素输出的均值,

即 =(|∈)cm=ave(yi|xi∈leafm)。

2.构建过程

回归树采用平方和损失函数

每次选择一个切分变量j和切分点s使得

其中

对于拆分的两个部分继续使用上述方式进行拆分,直至满足停止条件(达到指定深度),

cm是一个叶子节点的预测值,这个问题很明显如果不限制深度最终会达到一个叶子节点只有一条数据的过拟合现象。

GradientTreeBoost
  回归树森林,可用于多分类和而分类,每次随机一部分数据,构建一个回归树,共同组成一个森林,预测结果是森林每个树的预测值求和去平均值的结果。

CART 在分类问题和回归问题中的相同和差异:

  • 相同:

    • 在分类问题和回归问题中,CART 都是一棵二叉树,除叶子节点外的所有节点都有且仅有两个子节点;
    • 所有落在同一片叶子中的输入都有同样的输出。
  • 差异:
    • 在分类问题中,CART 使用基尼指数(Gini index)作为选择特征(feature)和划分(split)的依据;在回归问题中,CART 使用 mse(mean square error)或者 mae(mean absolute error)作为选择 feature 和 split 的 criteria。
    • 在分类问题中,CART 的每一片叶子都代表的是一个 class;在回归问题中,CART 的每一片叶子表示的是一个预测值,取值是连续的。

RegressionTree(回归树)的更多相关文章

  1. 回归树的原理及Python实现

    大名鼎鼎的 GBDT 算法就是用回归树组合而成的.本文就回归树的基本原理进行讲解,并手把手.肩并肩地带您实现这一算法. 1. 原理篇 1.1 最简单的模型 如果预测某个连续变量的大小,最简单的模型之一 ...

  2. CART(分类回归树)

    1.简单介绍 线性回归方法可以有效的拟合所有样本点(局部加权线性回归除外).当数据拥有众多特征并且特征之间关系十分复杂时,构建全局模型的想法一个是困难一个是笨拙.此外,实际中很多问题为非线性的,例如常 ...

  3. CART:分类与回归树

    起源:决策树切分数据集 决策树每次决策时,按照一定规则切分数据集,并将切分后的小数据集递归处理.这样的处理方式给了线性回归处理非线性数据一个启发. 能不能先将类似特征的数据切成一小部分,再将这一小部分 ...

  4. cart中回归树的原理和实现

    前面说了那么多,一直围绕着分类问题讨论,下面我们开始学习回归树吧, cart生成有两个关键点 如何评价最优二分结果 什么时候停止和如何确定叶子节点的值 cart分类树采用gini系数来对二分结果进行评 ...

  5. 连续值的CART(分类回归树)原理和实现

    上一篇我们学习和实现了CART(分类回归树),不过主要是针对离散值的分类实现,下面我们来看下连续值的cart分类树如何实现 思考连续值和离散值的不同之处: 二分子树的时候不同:离散值需要求出最优的两个 ...

  6. 机器学习技法-决策树和CART分类回归树构建算法

    课程地址:https://class.coursera.org/ntumltwo-002/lecture 重要!重要!重要~ 一.决策树(Decision Tree).口袋(Bagging),自适应增 ...

  7. 利用CART算法建立分类回归树

    常见的一种决策树算法是ID3,ID3的做法是每次选择当前最佳的特征来分割数据,并按照该特征所有可能取值来切分,也就是说,如果一个特征有四种取值,那么数据将被切分成4份,一旦按某特征切分后,该特征在之后 ...

  8. CART分类与回归树与GBDT(Gradient Boost Decision Tree)

    一.CART分类与回归树 资料转载: http://dataunion.org/5771.html        Classification And Regression Tree(CART)是决策 ...

  9. CART分类与回归树 学习笔记

    CART:Classification and regression tree,分类与回归树.(是二叉树) CART是决策树的一种,主要由特征选择,树的生成和剪枝三部分组成.它主要用来处理分类和回归问 ...

随机推荐

  1. 最小编辑距离python

    1 什么是编辑距离在计算文本的相似性时,经常会用到编辑距离(Levenshtein距离),其指两个字符串之间,由一个字符串转成另一个所需的最少编辑操作次数.在字符串形式上来说,编辑距离越小,那么两个文 ...

  2. Linux_Program 前台后台 切换 查看 kill 实用 mark

    有时当我们在linux 上 输入  yum repolist  或 curl  www.XXX.  时程序由已 :Intel或system  原因   按下 ctrl+z .在Linux终端运行命令的 ...

  3. SMPL模型Shape和Pose参数

    两部分 1.Pose参数 2.Shape参数 一 Pose参数 共24个关节点,对应idx从0到23,图中3个小图分别表示zero shape只有idx节点分别绕x/y/z轴旋转. 其中蓝色线表示-p ...

  4. Junit学习使用

    InputStream in; SqlSessionFactory factory; SqlSession session; UserDao userDao; @BeforeEach public v ...

  5. Win7微信DLL劫持反弹SHELL(10.9 第十七天)

    (该文参考自网络其他人资料,仅为学习,不得用于非法用途) 准备的工具:kali虚拟机 W7虚拟机 微信 ProcessExplorer the-backdoor-factory-master 打开微信 ...

  6. CodeForces - 401C Team(简单构造)

    题意:要求构造一个字符串,要求不能有连续的两个0在一起,也不能有连续的三个1在一起. 分析: 1.假设有4个0,最多能构造的长度为11011011011011,即10个1,因此若m > (n + ...

  7. c\c++ 中字符串分割,并且转换为整形数据

    在项目开发中,经常使用到字符串分割, 并且将其转换为整形(比如IP的分割获取,MAC地址的分割获取等),代码如下: #ifndef _UNICODE void StrToIntData( char * ...

  8. Atom 插件推荐

    (1)atom-ternjs : js(e6)的自动补充 (2)key-binding-mode : atom 快捷键管理 (3)pre-view : pdf预览 (4)activate-power- ...

  9. webservice 的简单实现

    1.什么是webservice: 服务端整出一些资源让客户端访问(获取数据) 一个跨语言.跨平台的规范2.作用:跨平台调用.跨语言调用.远程调用 3.什么时候使用webservice: 1.新旧系统之 ...

  10. Sql server 表表达式

    1.表表达式概述 (1)表表达式(table expression) 是一个命名的查询表达式.代表一个有效的关系表 (2)在DML 中,使用表表达式和使用其他表非常类似 (3)sqlserver 支持 ...