题目描述 Description

定义:f0=f1=1, fn=fn-1+fn-2(n>=2)。{fi}称为Fibonacci数列。

输入n,求fn mod q。其中1<=q<=30000。

输入描述 Input Description

第一行一个数T(1<=T<=10000)。

以下T行,每行两个数,n,q(n<=109, 1<=q<=30000)

输出描述 Output Description

文件包含T行,每行对应一个答案。

样例输入 Sample Input

3

6 2

7 3

7 11

样例输出 Sample Output

1

0

10

数据范围及提示 Data Size & Hint

1<=T<=10000

n<=109, 1<=q<=30000

感谢:这道题卡了一天,最后发现自己是被坑了,我一直以为斐波那契数列f0=0,f1=f2=1,结果这是f0=f1=1;

  好吧这只是我智障了,我还是来说说矩阵怎么做吧

  首先矩阵乘法的定义:

               

  A和B两个矩阵乘出来是

          

  知道矩阵是怎么样乘后就可以来解决这道题,我们定义一个初始矩阵和单位矩阵

  

  而fn+fn-1=fn+1,所以这就是这道题的关键了

  例如我要求f6 就要用初识矩阵*b^5,而初识矩阵ans[1][1]=f1=1,ans[1][2]=f0=1

  当数据比较大的时候这个b^n-1次方可能就会爆,所以这又要用到快速幂

  然后我们来看个快速幂模板

//求a^b %c
void done(int a,int b,int c)
{
ans=1;
while(b)
{
if(b&)
ans=(ans*a)%c;
a=(a*a)%c;
b>>=;
} }

有了这两个知识,我们就可以实现矩阵快速幂了

  代码如下:

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
using namespace std; long long ans[][],c[][],b[][];
long long n,m,t; void dod(int n)
{
while(n)
{
if(n&)//判断n的奇偶性
{
for(int i=;i<=;i++)
for(int j=;j<=;j++)
{
for(int k=;k<=;k++)
c[i][j]=(c[i][j]+ans[k][j]*b[i][k])%m;//这个地方的i,j,k建议画图分析
}
for(int i=;i<=;i++)
for(int j=;j<=;j++)
{
ans[i][j]=c[i][j];
c[i][j]=;
}
}
for(int i=;i<=;i++)
for(int j=;j<=;j++)
{
for(int k=;k<=;k++)
c[i][j]=(c[i][j]+b[i][k]*b[k][j])%m;
}
for(int i=;i<=;i++)
for(int j=;j<=;j++)
{
b[i][j]=c[i][j];
c[i][j]=;
}
n>>=; } } int main()
{
cin>>t;
while(t--)
{
scanf("%lld%lld",&n,&m);
b[][]=b[][]=b[][]=;
ans[][]=ans[][]=;
b[][]=;
n--;//fn只需要初识矩阵*b^n-1
dod(n);
printf("%lld\n",ans[][]%m);
} }

讲题略水,如有错误,望诸位大佬指出

[codevs]1250斐波那契数列<矩阵乘法&快速幂>的更多相关文章

  1. 斐波那契数列 矩阵乘法优化DP

    斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007​\),\(n\le 10^{18}​\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...

  2. Codevs 1574 广义斐波那契数列(矩阵乘法)

    1574 广义斐波那契数列 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 广义的斐波那契数列是指形如an=p*an-1+q* ...

  3. 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]

    P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...

  4. [luogu P1962] 斐波那契数列(带快速幂矩阵乘法模板)

    题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...

  5. P1349 广义斐波那契数列(矩阵乘法)

    题目 P1349 广义斐波那契数列 解析 把普通的矩阵乘法求斐波那契数列改一改,随便一推就出来了 \[\begin{bmatrix}f_2\\f_1 \end{bmatrix}\begin{bmatr ...

  6. 4.17 斐波那契数列 K维斐波那契数列 矩阵乘法 构造

    一道矩阵乘法的神题 早上的时候我开挂了 想了2h想出来了. 关于这道题我推了很多矩阵 最终推出两个核心矩阵 发现这两个矩阵放在一起做快速幂就行了. 当k==1时 显然的矩阵乘法 多开一个位置维护前缀和 ...

  7. HDU4549 M斐波那契数列 矩阵快速幂+欧拉函数+欧拉定理

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

  8. 51nod1242 斐波那契数列 矩阵快速幂

    1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 #include<stdio.h> #define mod 100000000 ...

  9. POJ3070 斐波那契数列 矩阵快速幂

    题目链接:http://poj.org/problem?id=3070 题意就是让你求斐波那契数列,不过n非常大,只能用logn的矩阵快速幂来做了 刚学完矩阵快速幂刷的水题,POJ不能用万能头文件是真 ...

随机推荐

  1. 正式学习MVC 01

    1.新建项目 点击创建新项目,选择ASP.NET web应用程序,对项目进行命名后点击创建. 截图如下: 取消勾选HTTPS配置 可选择空 + mvc 或直接选定MVC 2.目录结构分析 1) App ...

  2. FreeSql 插入数据,如何返回自增值

    FreeSql是一个功能强大的 .NET ORM 功能库,支持 .NetFramework 4.0+..NetCore 2.1+.Xamarin 等支持 NetStandard 所有运行平台. 以 M ...

  3. layui表格数据渲染SpringBoot+Thymeleaf返回的数据时报错(Caused by: org.attoparser.ParseException: Could not parse as expression: ")

    layui table渲染数据时报错(Caused by: org.attoparser.ParseException: Could not parse as expression: ") ...

  4. Python装饰器及内置函数

    装饰器 听名字应该知道这是一个装饰的东西,我们今天就来讲解一下装饰器,有的铁子们应该听说,有的没有听说过.没有关系我告诉你们这是一个很神奇的东西 这个有多神奇呢? 我们先来复习一下闭包 def fun ...

  5. python中那些让开发事半功倍的模块

    1. Map Map会将一个函数映射到一个输入列表的所有元素上 ex: 有一个列表: [1,2,3,4,5,6], 现在要求把列表每个元素乘以10 如果你还不知道Map,那你可能会这样做: list1 ...

  6. C++:利用全局钩子实现键盘锁

    在家看网课,记笔记不方便.于是就想弄个键盘锁,方便学习(在寝室也好把外接键盘放上去打游戏). 其实这东西挺简单的,就三行代码. HHOOK hk; LRESULT CALLBACK kbproc(in ...

  7. CSS每日学习笔记(2)

    7.31.2019 1.CSS定位:允许你定义元素框相对于其正常位置应该出现的位置,或者相对于父元素.另一个元素甚至浏览器窗口本身的位置. CSS 有三种基本的定位机制:普通流.浮动和绝对定位.除非专 ...

  8. Spring框架——IOC 工厂方法

    IoC 是典型的⼯厂模式,如何使⽤用⼯厂模式创建 bean, IoC 通过⼯厂模式创建 bean 有以下两种⽅式 xml <?xml version="1.0" encodi ...

  9. XSS-Labs(Level1-10)

    Level-1 简单尝试 使用基础poc<script>alert(1)</script> 代码审计 <?php ini_set("display_errors ...

  10. 一款带Web面板的轻量级、高性能内网穿透工具:nps使用教程

    说明:内网穿透工具之前已经介绍了不少了,比如Frp.lanproxy.Holer等,现在再介绍个带Web面板的穿透工具nps,之前叫easyProxy,只是改名了而已,该工具是一款使用go语言编写的轻 ...