概率图模型之EM算法
一、EM算法概述
EM算法(Expectation Maximization Algorithm,期望极大算法)是一种迭代算法,用于求解含有隐变量的概率模型参数的极大似然估计(MLE)或极大后验概率估计(MAP)。EM算法是一种比较通用的参数估计算法,被广泛用于朴素贝叶斯、GMM(高斯混合模型)、K-means(K均值聚类)和HMM(隐马尔科夫模型)的参数估计。
隐变量是指不能被直接观察到,但是对系统的状态和能被观察到的变量存在影响的变量,比如经典的三硬币模型中,能被观察到的变量是在某次实验中,先后丢两枚硬币的最终结果,比如1或0(1表示正面朝上,0表示背面朝上),而隐变量是第一枚硬币抛掷后的结果(假设是别人抛的,我们不能看到抛第一枚硬币的结果)。用HMM进行词性标注时,可以观察到的变量是词语,而隐变量是每个词的词性。
二、EM算法的迭代步骤
用Y表示可观测随机变量的数据,Z表示隐随机变量的数据,则Y和Z的数据合起来称为完全数据,而单独的观测数据Y称为不完全数据。
给定观测数据Y,θ为需要估计的参数。假设Y和Z的联合概率分布为P(Y, Z|θ),那么完全数据的对数似然函数是logP(Y, Z|θ);假设Y的概率分布为P(Y| θ),那么不完全数据Y的对数似然函数是L(θ)=logP(Y|θ)。
EM算法的目标是什么呢?EM算法的目标是通过迭代,求不完全数据的对数似然函数L(θ)=logP(Y, Z|θ)的极大似然估计,这可以转化为求完全数据的对数似然函数logP(Y, Z|θ)的期望的极大似然估计。
EM算法迭代的步骤如下:
输入:观测变量数据Y,隐变量数据Z,联合分布P(Y, Z|θ),条件分布P(Z|Y,θ);
输出:模型参数θ。
1、选择参数的初始值 θ(0),开始迭代;
2、E步:求期望。记第i次迭代后参数 θ的估计值为θ(i),在第i+1次迭代时,计算完全数据的对数似然函数logP(Y, Z|θ)的期望。
这个期望的完整表述非常长:在给定观测数据Y和第i轮迭代的参数θ(i)时,完全数据的对数似然函数logP(Y, Z|θ)的期望,计算期望的概率是隐随机变量数据Z的条件概率分布P(Z|Y, θ(i))。我们把这个期望称为Q函数。
一般我们求期望是用n个样本的概率分布去求,而这里是用隐随机变量数据Z的条件概率分布去求。(在三硬币模型中,这个Z的条件概率分布是抛掷第一枚硬币得到正面或反面的概率:Z∈{正面,反面},P(Z=正面|Y, θ(i))=π,P(Z=反面|Y, θ(i))=1-π。)
3、M步:求极大。求使得Q(θ ,θ(i))极大化的θ,确定第i+1次迭代的参数估计值θ(i+1)。
4、重复第2步和第3步,直到收敛而停止迭代。停止迭代的条件是,对于较小的正数ε1、ε2,满足:
其中,函数Q(θ ,θ(i))是EM算法的核心,是完全数据的对数似然函数logP(Y, Z|θ)的期望,我们把求不完全数据的对数似然函数L(θ)=logP(Y, Z|θ)的极大似然估计的问题,转化为求Q函数的极大化问题
三、EM算法的推导
(一)Jensen不等式
EM算法的推导需要用到Jensen不等式,一般以凸函数为例来介绍Jensen不等式。
设f(x)是一个定义域在实数集上的函数,如果在x∈R上满足,那么称f(x)为凸函数,进一步如果
对于所有的x都成立,那么f(x)为严格凸函数。假设X是随机变量,那么凸函数的Jensen不等式定义为:
从下图中可以非常直观地理解这个不等式。
而凹函数的Jensen不等式的不等号方向相反。EM算法中的对数似然函数log(x)的二阶导数为(-1/x2)< 0,底数取自然对数e,那么不等号方向与上面凸函数的相反。EM算法中的Jensen不等式的公式和图如下:
(二) EM算法的推导
EM算法是用Q函数的极大化,来近似实现对不完全数据Y的对数似然函数的极大似然估计,下面我们从不完全数据Y的对数似然函数的极大似然估计问题来导出EM算法。
1、原始目标:对于含有隐变量的概率模型,极大化不完全数据Y关于参数θ的对数似然函数,即极大化:
2、假设在第i次迭代后参数θ的估计值是θ(i),EM算法就是让新的估计值θ使L(θ)增加,即L(θ)>L(θ(i)),并逐步逼近极大值。为此,计算二者的差:
3、用Jensen不等式得到差值的下界:
于是L(θ)的下界为:
4、选择下一个参数θ(i+1),极大化L(θ)的下界B(θ, θ(i)):
省略掉对参数极大化而言是常数的项,就得到了极大化Q函数Q(θ, θ(i))的表达式:
于是我们得到了第i+1次迭代时的Q函数:
5、不断求解下界的极大化或者说Q函数的极大化,来逼近对数似然函数L(θ)=logP(Y|θ)的极大化。
四、EM算法收敛性的证明
证明EM算法会收敛,其实就是证明不完全数据Y的对数似然函数L(θ)=logP(Y|θ)是单调递增的,即L(θ(i+1)) ≥ L(θ(i)),而且有上界,那么必然会收敛到一个值。而P(Y|θ)作为概率的乘积,必然小于1,有上界,所以EM算法的收敛性也就是证明Y的似然函数P(Y|θ)是单调递增的,即P(Y|θ(i+1)) ≥ P(Y|θ(i))。于是有以下的证明。
1、定理:设L(θ)=logP(Y|θ)是观测数据Y的对数似然函数,θ(i)(i=1,2,...,n)是EM算法得到的参数估计序列,L(θ(i))为对应的对数似然函数序列,则L(θ(i))=logP(Y|θ(i))必定会收敛到某一值L*。
2、证明思路:只要证明log(x)是单调递增函数(以e为底),且x有上界即可。在EM算法中,P(Y|θ)是有上界的,又log(x)单调递增,因此只要证明P(Y|θ)是单调递增的。
3、证明观测数据Y的似然函数P(Y|θ)是单调递增的,即P(Y|θ(i+1)) ≥ P(Y|θ(i)):
由于:
取对数得到:
已知Q函数为:
再构造一个H函数:
由:
于是对数似然函数可以写成:
分别取θ为θ(i)、θ(i+1),让对数似然函数相减,有:
对于等式右端的第一项,由于θ(i+1)是使Q(θ, θ(i+1))达到极大所得到的,所以有:
再看等式右端的第二项,同样运用Jensen不等式:
于是得到:
参考资料:
1、李航:《统计学习方法》
2、CS229:《The EM algorithm 》
概率图模型之EM算法的更多相关文章
- 含隐变量模型求解——EM算法
1 EM算法的引入1.1 EM算法1.2 EM算法的导出2 EM算法的收敛性3EM算法在高斯混合模型的应用3.1 高斯混合模型Gaussian misture model3.2 GMM中参数估计的EM ...
- 聚类之高斯混合模型与EM算法
一.高斯混合模型概述 1.公式 高斯混合模型是指具有如下形式的概率分布模型: 其中,αk≥0,且∑αk=1,是每一个高斯分布的权重.Ø(y|θk)是第k个高斯分布的概率密度,被称为第k个分模型,参数为 ...
- opencv3中的机器学习算法之:EM算法
不同于其它的机器学习模型,EM算法是一种非监督的学习算法,它的输入数据事先不需要进行标注.相反,该算法从给定的样本集中,能计算出高斯混和参数的最大似然估计.也能得到每个样本对应的标注值,类似于kmea ...
- EM算法[转]
最大期望算法:EM算法. 在统计计算中,最大期望算法(EM)是在概率模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量. 最大期望算法经过两个步骤交替进行计算: 第 ...
- 机器学习-EM算法笔记
EM算法也称期望最大化(Expectation-Maximum,简称EM)算法,它是一个基础算法,是很多机器学习领域算法的基础,比如隐式马尔科夫算法(HMM), LDA主题模型的变分推断,混合高斯模型 ...
- EM 算法-对鸢尾花数据进行聚类
公号:码农充电站pro 主页:https://codeshellme.github.io 之前介绍过K 均值算法,它是一种聚类算法.今天介绍EM 算法,它也是聚类算法,但比K 均值算法更加灵活强大. ...
- 文本主题模型之LDA(三) LDA求解之变分推断EM算法
文本主题模型之LDA(一) LDA基础 文本主题模型之LDA(二) LDA求解之Gibbs采样算法 文本主题模型之LDA(三) LDA求解之变分推断EM算法 本文是LDA主题模型的第三篇,读这一篇之前 ...
- NLP —— 图模型(零):EM算法简述及简单示例(三硬币模型)
最近接触了pLSA模型,该模型需要使用期望最大化(Expectation Maximization)算法求解. 本文简述了以下内容: 为什么需要EM算法 EM算法的推导与流程 EM算法的收敛性定理 使 ...
- 记录:EM 算法估计混合高斯模型参数
当概率模型依赖于无法观测的隐性变量时,使用普通的极大似然估计法无法估计出概率模型中参数.此时需要利用优化的极大似然估计:EM算法. 在这里我只是想要使用这个EM算法估计混合高斯模型中的参数.由于直观原 ...
随机推荐
- SD-WAN基本介绍
SD-WAN是什么? SD-WAN,即软件定义广域网络,是将SDN技术应用到广域网场景中所形成的一种服务.这种服务用于连接广阔地理范围的企业网络.数据中心.互联网应用及云服务,旨在帮助用户降低广域网的 ...
- DRF项目之序列化器和视图重写方法的区别
我们,都知道,DRF框架是一款高度封装的框架. 我们可以通过重写一些方法来实现自定义的功能. 今天,就来说说在视图中重写和序列化器中重写方法的区别. 在视图中重写方法: 接收请求,处理数据(业务逻辑) ...
- Python开发之Anconda环境搭建
Python的强大之处在于它的应用范围广泛,遍及人工智能.科学计算.web开发.系统运维.大数据及云计算等,实现其强大功能的前提,就是Python具有数量庞大且功能相对完善的标准库和第三方库.通过对库 ...
- SpringCloud+Eureka+Feign+Ribbon的简化搭建流程,加入熔断,网关和Redis缓存[2]
目录 前提:本篇是基于 SpringCloud+Eureka+Feign+Ribbon的简化搭建流程和CRUD练习[1] 的修改与拓展 1.修改consumer的CenterFeign.java,把返 ...
- [Write-up]-pwnlab_init
关于 下载地址点我 Flag: /root/flag.txt 放假的第一天 哔哩哔哩视频 信息收集 nmap -sn 192.168.7.1/24 Starting Nmap 7.01 ( https ...
- Lesson 13 The search for oil
What do oilmen want to achieve as soon as they strike oil? The deepest holes of all are made for oil ...
- I Hate it-HDU1754 点修改+区间最大值
题意: 很多学校流行一种比较的习惯.老师们很喜欢询问,从某某到某某当中,分数最高的是多少.这让很多学生很反感.不管你喜不喜欢, 现在需要你做的是,就是按照老师的要求,写一个程序,模拟老师的询问.当然, ...
- 吴裕雄 Bootstrap 前端框架开发——Bootstrap 按钮:按钮被点击
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...
- No qualifying bean of type 'org.springframework.ui.Model' available
原因:@Autowired 下面没有注入类
- js实现深度拷贝
js实现拷贝,使用普通赋值对象,在操作其中一个对象值的时候,另一个也会更改,不符合需求 因此引入深度拷贝,以下为实现深度拷贝的几种法: Object.assign // 合并多个对象 var targ ...