用CNN及MLP等方法识别minist数据集

2017年02月13日 21:13:09 hnsywangxin 阅读数:1124更多

 
前几天用CNN识别手写数字集,后来看到kaggle上有一个比赛是识别手写数字集的,已经进行了一年多了,目前有1179个有效提交,最高的是100%,我做了一下,用keras做的,一开始用最简单的MLP,准确率只有98.19%,然后不断改进,现在是99.78%,然而我看到排名第一是100%,心碎 = =,于是又改进了一版,现在把最好的结果记录一下,如果提升了再来更新。

  手写数字集相信大家应该很熟悉了,这个程序相当于学一门新语言的“Hello World”,或者mapreduce的“WordCount”:)这里就不多做介绍了,简单给大家看一下:

 1 # Author:Charlotte
2 # Plot mnist dataset
3 from keras.datasets import mnist
4 import matplotlib.pyplot as plt
5 # load the MNIST dataset
6 (X_train, y_train), (X_test, y_test) = mnist.load_data()
7 # plot 4 images as gray scale
8 plt.subplot(221)
9 plt.imshow(X_train[0], cmap=plt.get_cmap('PuBuGn_r'))
10 plt.subplot(222)
11 plt.imshow(X_train[1], cmap=plt.get_cmap('PuBuGn_r'))
12 plt.subplot(223)
13 plt.imshow(X_train[2], cmap=plt.get_cmap('PuBuGn_r'))
14 plt.subplot(224)
15 plt.imshow(X_train[3], cmap=plt.get_cmap('PuBuGn_r'))
16 # show the plot
17 plt.show()

  图:

  1.BaseLine版本

  一开始我没有想过用CNN做,因为比较耗时,所以想看看直接用比较简单的算法看能不能得到很好的效果。之前用过机器学习算法跑过一遍,最好的效果是SVM,96.8%(默认参数,未调优),所以这次准备用神经网络做。BaseLine版本用的是MultiLayer Percepton(多层感知机)。这个网络结构比较简单,输入--->隐含--->输出。隐含层采用的rectifier linear unit,输出直接选取的softmax进行多分类。

  网络结构:

  代码:

 1 # coding:utf-8
2 # Baseline MLP for MNIST dataset
3 import numpy
4 from keras.datasets import mnist
5 from keras.models import Sequential
6 from keras.layers import Dense
7 from keras.layers import Dropout
8 from keras.utils import np_utils
9
10 seed = 7
11 numpy.random.seed(seed)
12 #加载数据
13 (X_train, y_train), (X_test, y_test) = mnist.load_data()
14
15 num_pixels = X_train.shape[1] * X_train.shape[2]
16 X_train = X_train.reshape(X_train.shape[0], num_pixels).astype('float32')
17 X_test = X_test.reshape(X_test.shape[0], num_pixels).astype('float32')
18
19 X_train = X_train / 255
20 X_test = X_test / 255
21
22 # 对输出进行one hot编码
23 y_train = np_utils.to_categorical(y_train)
24 y_test = np_utils.to_categorical(y_test)
25 num_classes = y_test.shape[1]
26
27 # MLP模型
28 def baseline_model():
29 model = Sequential()
30 model.add(Dense(num_pixels, input_dim=num_pixels, init='normal', activation='relu'))
31 model.add(Dense(num_classes, init='normal', activation='softmax'))
32 model.summary()
33 model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
34 return model
35
36 # 建立模型
37 model = baseline_model()
38
39 # Fit
40 model.fit(X_train, y_train, validation_data=(X_test, y_test), nb_epoch=10, batch_size=200, verbose=2)
41
42 #Evaluation
43 scores = model.evaluate(X_test, y_test, verbose=0)
44 print("Baseline Error: %.2f%%" % (100-scores[1]*100))#输出错误率

  结果:

 1 Layer (type)                     Output Shape          Param #     Connected to
2 ====================================================================================================
3 dense_1 (Dense) (None, 784) 615440 dense_input_1[0][0]
4 ____________________________________________________________________________________________________
5 dense_2 (Dense) (None, 10) 7850 dense_1[0][0]
6 ====================================================================================================
7 Total params: 623290
8 ____________________________________________________________________________________________________
9 Train on 60000 samples, validate on 10000 samples
10 Epoch 1/10
11 3s - loss: 0.2791 - acc: 0.9203 - val_loss: 0.1420 - val_acc: 0.9579
12 Epoch 2/10
13 3s - loss: 0.1122 - acc: 0.9679 - val_loss: 0.0992 - val_acc: 0.9699
14 Epoch 3/10
15 3s - loss: 0.0724 - acc: 0.9790 - val_loss: 0.0784 - val_acc: 0.9745
16 Epoch 4/10
17 3s - loss: 0.0509 - acc: 0.9853 - val_loss: 0.0774 - val_acc: 0.9773
18 Epoch 5/10
19 3s - loss: 0.0366 - acc: 0.9898 - val_loss: 0.0626 - val_acc: 0.9794
20 Epoch 6/10
21 3s - loss: 0.0265 - acc: 0.9930 - val_loss: 0.0639 - val_acc: 0.9797
22 Epoch 7/10
23 3s - loss: 0.0185 - acc: 0.9956 - val_loss: 0.0611 - val_acc: 0.9811
24 Epoch 8/10
25 3s - loss: 0.0150 - acc: 0.9967 - val_loss: 0.0616 - val_acc: 0.9816
26 Epoch 9/10
27 4s - loss: 0.0107 - acc: 0.9980 - val_loss: 0.0604 - val_acc: 0.9821
28 Epoch 10/10
29 4s - loss: 0.0073 - acc: 0.9988 - val_loss: 0.0611 - val_acc: 0.9819
30 Baseline Error: 1.81%

  可以看到结果还是不错的,正确率98.19%,错误率只有1.81%,而且只迭代十次效果也不错。这个时候我还是没想到去用CNN,而是想如果迭代100次,会不会效果好一点?于是我迭代了100次,结果如下:

Epoch 100/100
8s - loss: 4.6181e-07 - acc: 1.0000 - val_loss: 0.0982 - val_acc: 0.9854
Baseline Error: 1.46%

  从结果中可以看出,迭代100次也只提高了0.35%,没有突破99%,所以就考虑用CNN来做。

  2.简单的CNN网络

  keras的CNN模块还是很全的,由于这里着重讲CNN的结果,对于CNN的基本知识就不展开讲了。

  网络结构:

  代码:

 1 #coding: utf-8
2 #Simple CNN
3 import numpy
4 from keras.datasets import mnist
5 from keras.models import Sequential
6 from keras.layers import Dense
7 from keras.layers import Dropout
8 from keras.layers import Flatten
9 from keras.layers.convolutional import Convolution2D
10 from keras.layers.convolutional import MaxPooling2D
11 from keras.utils import np_utils
12
13 seed = 7
14 numpy.random.seed(seed)
15
16 #加载数据
17 (X_train, y_train), (X_test, y_test) = mnist.load_data()
18 # reshape to be [samples][channels][width][height]
19 X_train = X_train.reshape(X_train.shape[0], 1, 28, 28).astype('float32')
20 X_test = X_test.reshape(X_test.shape[0], 1, 28, 28).astype('float32')
21
22 # normalize inputs from 0-255 to 0-1
23 X_train = X_train / 255
24 X_test = X_test / 255
25
26 # one hot encode outputs
27 y_train = np_utils.to_categorical(y_train)
28 y_test = np_utils.to_categorical(y_test)
29 num_classes = y_test.shape[1]
30
31 # define a simple CNN model
32 def baseline_model():
33 # create model
34 model = Sequential()
35 model.add(Convolution2D(32, 5, 5, border_mode='valid', input_shape=(1, 28, 28), activation='relu'))
36 model.add(MaxPooling2D(pool_size=(2, 2)))
37 model.add(Dropout(0.2))
38 model.add(Flatten())
39 model.add(Dense(128, activation='relu'))
40 model.add(Dense(num_classes, activation='softmax'))
41 # Compile model
42 model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
43 return model
44
45 # build the model
46 model = baseline_model()
47
48 # Fit the model
49 model.fit(X_train, y_train, validation_data=(X_test, y_test), nb_epoch=10, batch_size=128, verbose=2)
50
51 # Final evaluation of the model
52 scores = model.evaluate(X_test, y_test, verbose=0)
53 print("CNN Error: %.2f%%" % (100-scores[1]*100))

  结果:

 1 ____________________________________________________________________________________________________
2 Layer (type) Output Shape Param # Connected to
3 ====================================================================================================
4 convolution2d_1 (Convolution2D) (None, 32, 24, 24) 832 convolution2d_input_1[0][0]
5 ____________________________________________________________________________________________________
6 maxpooling2d_1 (MaxPooling2D) (None, 32, 12, 12) 0 convolution2d_1[0][0]
7 ____________________________________________________________________________________________________
8 dropout_1 (Dropout) (None, 32, 12, 12) 0 maxpooling2d_1[0][0]
9 ____________________________________________________________________________________________________
10 flatten_1 (Flatten) (None, 4608) 0 dropout_1[0][0]
11 ____________________________________________________________________________________________________
12 dense_1 (Dense) (None, 128) 589952 flatten_1[0][0]
13 ____________________________________________________________________________________________________
14 dense_2 (Dense) (None, 10) 1290 dense_1[0][0]
15 ====================================================================================================
16 Total params: 592074
17 ____________________________________________________________________________________________________
18 Train on 60000 samples, validate on 10000 samples
19 Epoch 1/10
20 32s - loss: 0.2412 - acc: 0.9318 - val_loss: 0.0754 - val_acc: 0.9766
21 Epoch 2/10
22 32s - loss: 0.0726 - acc: 0.9781 - val_loss: 0.0534 - val_acc: 0.9829
23 Epoch 3/10
24 32s - loss: 0.0497 - acc: 0.9852 - val_loss: 0.0391 - val_acc: 0.9858
25 Epoch 4/10
26 32s - loss: 0.0413 - acc: 0.9870 - val_loss: 0.0432 - val_acc: 0.9854
27 Epoch 5/10
28 34s - loss: 0.0323 - acc: 0.9897 - val_loss: 0.0375 - val_acc: 0.9869
29 Epoch 6/10
30 36s - loss: 0.0281 - acc: 0.9909 - val_loss: 0.0424 - val_acc: 0.9864
31 Epoch 7/10
32 36s - loss: 0.0223 - acc: 0.9930 - val_loss: 0.0328 - val_acc: 0.9893
33 Epoch 8/10
34 36s - loss: 0.0198 - acc: 0.9939 - val_loss: 0.0381 - val_acc: 0.9880
35 Epoch 9/10
36 36s - loss: 0.0156 - acc: 0.9954 - val_loss: 0.0347 - val_acc: 0.9884
37 Epoch 10/10
38 36s - loss: 0.0141 - acc: 0.9955 - val_loss: 0.0318 - val_acc: 0.9893
39 CNN Error: 1.07%

  迭代的结果中,loss和acc为训练集的结果,val_loss和val_acc为验证机的结果。从结果上来看,效果不错,比100次迭代的MLP(1.46%)提升了0.39%,CNN的误差率为1.07%。这里的CNN的网络结构还是比较简单的,如果把CNN的结果再加几层,边复杂一代,结果是否还能提升?

  3.Larger CNN

  这一次我加了几层卷积层,代码:

 1 # Larger CNN
2 import numpy
3 from keras.datasets import mnist
4 from keras.models import Sequential
5 from keras.layers import Dense
6 from keras.layers import Dropout
7 from keras.layers import Flatten
8 from keras.layers.convolutional import Convolution2D
9 from keras.layers.convolutional import MaxPooling2D
10 from keras.utils import np_utils
11
12 seed = 7
13 numpy.random.seed(seed)
14 # load data
15 (X_train, y_train), (X_test, y_test) = mnist.load_data()
16 # reshape to be [samples][pixels][width][height]
17 X_train = X_train.reshape(X_train.shape[0], 1, 28, 28).astype('float32')
18 X_test = X_test.reshape(X_test.shape[0], 1, 28, 28).astype('float32')
19 # normalize inputs from 0-255 to 0-1
20 X_train = X_train / 255
21 X_test = X_test / 255
22 # one hot encode outputs
23 y_train = np_utils.to_categorical(y_train)
24 y_test = np_utils.to_categorical(y_test)
25 num_classes = y_test.shape[1]
26 # define the larger model
27 def larger_model():
28 # create model
29 model = Sequential()
30 model.add(Convolution2D(30, 5, 5, border_mode='valid', input_shape=(1, 28, 28), activation='relu'))
31 model.add(MaxPooling2D(pool_size=(2, 2)))
32 model.add(Convolution2D(15, 3, 3, activation='relu'))
33 model.add(MaxPooling2D(pool_size=(2, 2)))
34 model.add(Dropout(0.2))
35 model.add(Flatten())
36 model.add(Dense(128, activation='relu'))
37 model.add(Dense(50, activation='relu'))
38 model.add(Dense(num_classes, activation='softmax'))
39 # Compile model
40 model.summary()
41 model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
42 return model
43 # build the model
44 model = larger_model()
45 # Fit the model
46 model.fit(X_train, y_train, validation_data=(X_test, y_test), nb_epoch=69, batch_size=200, verbose=2)
47 # Final evaluation of the model
48 scores = model.evaluate(X_test, y_test, verbose=0)
49 print("Large CNN Error: %.2f%%" % (100-scores[1]*100))

  结果:

___________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
====================================================================================================
convolution2d_1 (Convolution2D) (None, 30, 24, 24) 780 convolution2d_input_1[0][0]
____________________________________________________________________________________________________
maxpooling2d_1 (MaxPooling2D) (None, 30, 12, 12) 0 convolution2d_1[0][0]
____________________________________________________________________________________________________
convolution2d_2 (Convolution2D) (None, 15, 10, 10) 4065 maxpooling2d_1[0][0]
____________________________________________________________________________________________________
maxpooling2d_2 (MaxPooling2D) (None, 15, 5, 5) 0 convolution2d_2[0][0]
____________________________________________________________________________________________________
dropout_1 (Dropout) (None, 15, 5, 5) 0 maxpooling2d_2[0][0]
____________________________________________________________________________________________________
flatten_1 (Flatten) (None, 375) 0 dropout_1[0][0]
____________________________________________________________________________________________________
dense_1 (Dense) (None, 128) 48128 flatten_1[0][0]
____________________________________________________________________________________________________
dense_2 (Dense) (None, 50) 6450 dense_1[0][0]
____________________________________________________________________________________________________
dense_3 (Dense) (None, 10) 510 dense_2[0][0]
====================================================================================================
Total params: 59933
____________________________________________________________________________________________________
Train on 60000 samples, validate on 10000 samples
Epoch 1/10
34s - loss: 0.3789 - acc: 0.8796 - val_loss: 0.0811 - val_acc: 0.9742
Epoch 2/10
34s - loss: 0.0929 - acc: 0.9710 - val_loss: 0.0462 - val_acc: 0.9854
Epoch 3/10
35s - loss: 0.0684 - acc: 0.9786 - val_loss: 0.0376 - val_acc: 0.9869
Epoch 4/10
35s - loss: 0.0546 - acc: 0.9826 - val_loss: 0.0332 - val_acc: 0.9890
Epoch 5/10
35s - loss: 0.0467 - acc: 0.9856 - val_loss: 0.0289 - val_acc: 0.9897
Epoch 6/10
35s - loss: 0.0402 - acc: 0.9873 - val_loss: 0.0291 - val_acc: 0.9902
Epoch 7/10
34s - loss: 0.0369 - acc: 0.9880 - val_loss: 0.0233 - val_acc: 0.9924
Epoch 8/10
36s - loss: 0.0336 - acc: 0.9894 - val_loss: 0.0258 - val_acc: 0.9913
Epoch 9/10
39s - loss: 0.0317 - acc: 0.9899 - val_loss: 0.0219 - val_acc: 0.9926
Epoch 10/10
40s - loss: 0.0268 - acc: 0.9916 - val_loss: 0.0220 - val_acc: 0.9919
Large CNN Error: 0.81%

  效果不错,现在的准确率是99.19%

  4.最终版本

  网络结构没变,只是在每一层后面加了dropout,结果居然有显著提升。一开始迭代500次,跑死我了,结果过拟合了,然后观察到69次的时候结果就已经很好了,就选择了迭代69次。

 1 # Larger CNN for the MNIST Dataset
2 import numpy
3 from keras.datasets import mnist
4 from keras.models import Sequential
5 from keras.layers import Dense
6 from keras.layers import Dropout
7 from keras.layers import Flatten
8 from keras.layers.convolutional import Convolution2D
9 from keras.layers.convolutional import MaxPooling2D
10 from keras.utils import np_utils
11 import matplotlib.pyplot as plt
12 from keras.constraints import maxnorm
13 from keras.optimizers import SGD
14 # fix random seed for reproducibility
15 seed = 7
16 numpy.random.seed(seed)
17 # load data
18 (X_train, y_train), (X_test, y_test) = mnist.load_data()
19 # reshape to be [samples][pixels][width][height]
20 X_train = X_train.reshape(X_train.shape[0], 1, 28, 28).astype('float32')
21 X_test = X_test.reshape(X_test.shape[0], 1, 28, 28).astype('float32')
22 # normalize inputs from 0-255 to 0-1
23 X_train = X_train / 255
24 X_test = X_test / 255
25 # one hot encode outputs
26 y_train = np_utils.to_categorical(y_train)
27 y_test = np_utils.to_categorical(y_test)
28 num_classes = y_test.shape[1]
29 ###raw
30 # define the larger model
31 def larger_model():
32 # create model
33 model = Sequential()
34 model.add(Convolution2D(30, 5, 5, border_mode='valid', input_shape=(1, 28, 28), activation='relu'))
35 model.add(MaxPooling2D(pool_size=(2, 2)))
36 model.add(Dropout(0.4))
37 model.add(Convolution2D(15, 3, 3, activation='relu'))
38 model.add(MaxPooling2D(pool_size=(2, 2)))
39 model.add(Dropout(0.4))
40 model.add(Flatten())
41 model.add(Dense(128, activation='relu'))
42 model.add(Dropout(0.4))
43 model.add(Dense(50, activation='relu'))
44 model.add(Dropout(0.4))
45 model.add(Dense(num_classes, activation='softmax'))
46 # Compile model
47 model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
48 return model
49
50 # build the model
51 model = larger_model()
52 # Fit the model
53 model.fit(X_train, y_train, validation_data=(X_test, y_test), nb_epoch=200, batch_size=200, verbose=2)
54 # Final evaluation of the model
55 scores = model.evaluate(X_test, y_test, verbose=0)
56 print("Large CNN Error: %.2f%%" % (100-scores[1]*100))

 结果:

 1 ____________________________________________________________________________________________________
2 Layer (type) Output Shape Param # Connected to
3 ====================================================================================================
4 convolution2d_1 (Convolution2D) (None, 30, 24, 24) 780 convolution2d_input_1[0][0]
5 ____________________________________________________________________________________________________
6 maxpooling2d_1 (MaxPooling2D) (None, 30, 12, 12) 0 convolution2d_1[0][0]
7 ____________________________________________________________________________________________________
8 convolution2d_2 (Convolution2D) (None, 15, 10, 10) 4065 maxpooling2d_1[0][0]
9 ____________________________________________________________________________________________________
10 maxpooling2d_2 (MaxPooling2D) (None, 15, 5, 5) 0 convolution2d_2[0][0]
11 ____________________________________________________________________________________________________
12 dropout_1 (Dropout) (None, 15, 5, 5) 0 maxpooling2d_2[0][0]
13 ____________________________________________________________________________________________________
14 flatten_1 (Flatten) (None, 375) 0 dropout_1[0][0]
15 ____________________________________________________________________________________________________
16 dense_1 (Dense) (None, 128) 48128 flatten_1[0][0]
17 ____________________________________________________________________________________________________
18 dense_2 (Dense) (None, 50) 6450 dense_1[0][0]
19 ____________________________________________________________________________________________________
20 dense_3 (Dense) (None, 10) 510 dense_2[0][0]
21 ====================================================================================================
22 Total params: 59933
23 ____________________________________________________________________________________________________
24 Train on 60000 samples, validate on 10000 samples
25 Epoch 1/69
26 34s - loss: 0.4248 - acc: 0.8619 - val_loss: 0.0832 - val_acc: 0.9746
27 Epoch 2/69
28 35s - loss: 0.1147 - acc: 0.9638 - val_loss: 0.0518 - val_acc: 0.9831
29 Epoch 3/69
30 35s - loss: 0.0887 - acc: 0.9719 - val_loss: 0.0452 - val_acc: 0.9855
31 、、、
32 Epoch 66/69
33 38s - loss: 0.0134 - acc: 0.9955 - val_loss: 0.0211 - val_acc: 0.9943
34 Epoch 67/69
35 38s - loss: 0.0114 - acc: 0.9960 - val_loss: 0.0171 - val_acc: 0.9950
36 Epoch 68/69
37 38s - loss: 0.0116 - acc: 0.9959 - val_loss: 0.0192 - val_acc: 0.9956
38 Epoch 69/69
39 38s - loss: 0.0132 - acc: 0.9969 - val_loss: 0.0188 - val_acc: 0.9978
40 Large CNN Error: 0.22%
41
42 real 41m47.350s
43 user 157m51.145s
44 sys 6m5.829s

  这是目前的最好结果,99.78%,然而还有很多地方可以提升,下次准确率提高了再来更 。

  总结:

  1.CNN在图像识别上确实比传统的MLP有优势,比传统的机器学习算法也有优势(不过也有通过随机森林取的很好效果的)

  2.加深网络结构,即多加几层卷积层有助于提升准确率,但是也能大大降低运行速度

  3.适当加Dropout可以提高准确率

  4.激活函数最好,算了,直接说就选relu吧,没有为啥,就因为relu能避免梯度消散这一点应该选它,训练速度快等其他优点下次专门总结一篇文章再说吧。

  5.迭代次数不是越多越好,很可能会过拟合,自己可以做一个收敛曲线,keras里可以用history函数plot一下,看算法是否收敛,还是发散。

转载地址:

http://www.cnblogs.com/charlotte77/p/5671136.html

用CNN及MLP等方法识别minist数据集的更多相关文章

  1. LeNet-5识别MINIST数据集

    LeNet-5 LeNet于90年代被提出,鉴于当时的计算能力和内存容量,直到2010年才能真正的实施这样的大规模计算.LeNet-5是LeCun于1998年提出的深度神经网络结构,总共包含7层网络( ...

  2. AI从入门到放弃:CNN的导火索,用MLP做图像分类识别?

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 作者:郑善友 腾讯MIG后台开发工程师 导语:在没有CNN以及更先进的神经网络的时代,朴素的想法是用多层感知机(MLP)做图片分类的识别:但 ...

  3. 积神经网络(CNN)的参数优化方法

    http://www.cnblogs.com/bonelee/p/8528863.html 积神经网络的参数优化方法——调整网络结构是关键!!!你只需不停增加层,直到测试误差不再减少. 积神经网络(C ...

  4. Android+TensorFlow+CNN+MNIST 手写数字识别实现

    Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站 ...

  5. 深度学习项目——基于卷积神经网络(CNN)的人脸在线识别系统

    基于卷积神经网络(CNN)的人脸在线识别系统 本设计研究人脸识别技术,基于卷积神经网络构建了一套人脸在线检测识别系统,系统将由以下几个部分构成: 制作人脸数据集.CNN神经网络模型训练.人脸检测.人脸 ...

  6. CNN结构:用于检测的CNN结构进化-分离式方法

    前言: 原文链接:基于CNN的目标检测发展过程       文章有大量修改,如有不适,请移步原文. 参考文章:图像的全局特征--用于目标检测 目标的检测和定位中一个很困难的问题是,如何从数以万计的候选 ...

  7. 【转】CNN+BLSTM+CTC的验证码识别从训练到部署

    [转]CNN+BLSTM+CTC的验证码识别从训练到部署 转载地址:https://www.jianshu.com/p/80ef04b16efc 项目地址:https://github.com/ker ...

  8. (五) Keras Adam优化器以及CNN应用于手写识别

    视频学习来源 https://www.bilibili.com/video/av40787141?from=search&seid=17003307842787199553 笔记 Adam,常 ...

  9. 第三节,TensorFlow 使用CNN实现手写数字识别(卷积函数tf.nn.convd介绍)

    上一节,我们已经讲解了使用全连接网络实现手写数字识别,其正确率大概能达到98%,这一节我们使用卷积神经网络来实现手写数字识别, 其准确率可以超过99%,程序主要包括以下几块内容 [1]: 导入数据,即 ...

随机推荐

  1. 09 MySQL字符集

    字符集的选择     1.数据库方面最流行的是UTF-8     2.如果只考虑支持汉字,那么使用GBK,毕竟GBK下,每个汉字只占用2个字节,而UTF-8需要3个字节.     3.如果需要做大量的 ...

  2. ipv6_RIPng配置

    ipv6 unicast-routing——类似IPv4的ip routing ipv6 route rip word——启用IPv6进程 防止环路——split-horizon——水平分割——不再接 ...

  3. Emacs: 设置窗口标题格式

    Emacs默认的窗口标题常常比较简单,例如我的默认标题是"emacs@ubuntu".如果想要在标题中显示更多的信息,我们可以对它进行一些设置.由于Emacs的可扩展性,这种修改实 ...

  4. 164-PHP 文本替换函数str_replace(五)

    <?php $str='Hello world!'; //定义源字符串 $search=array('Hello','world','!'); //定义将被替换的字符数组 $replace=ar ...

  5. mysql union 和union all

    http://www.w3school.com.cn/sql/sql_union.asp

  6. 5. 支撑高并发,高可用,海量数据备份恢复的Redis重要性

    商品详情页的架构实现 缓存架构 第一块儿,要掌握的很好的,就是redis架构 高并发,高可用,海量数据,备份,随时可以恢复,缓存架构如果要支撑这些要点,首先呢,redis就得支撑 redis架构,每秒 ...

  7. 逆向-PE导入表

    导入表 动态链接库需要导入表 结构 typedef struct _IMAGE_IMPORT_DESCRIPTOR { union { DWORD Characteristics; // 0 for ...

  8. 【LeetCode】组合总和

    [问题]给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合. candidates 中的数字可以无限制 ...

  9. ng-repeat动态生成的DOM如何获取宽度(封装好的方法)

    define(['custom/bootstrapApp'],function(app){ app.filter('getTabWidth',function(){ return function(a ...

  10. java集合对象区别一

    Vector和ArrayList 1.vector是线程同步的,所以他也是线程安全的,而ArrayList是线程异步的,是不安全的.如果不考虑到线程的安全因素,一般用ArrayList效率较高. 2. ...