PAT Advanced 1110 Complete Binary Tree (25) [完全⼆叉树]
题目
Given a tree, you are supposed to tell if it is a complete binary tree.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (<=20) which is the total number of nodes in the tree — and hence the nodes are numbered from 0 to N-1. Then N lines follow, each corresponds to a node, and gives the indices of the lef and right children of the node. If the child does not exist, a “-” will be put at the position. Any pair of children are separated by a space.
Output Specification:
For each case, print in one line “YES” and the index of the last node if the tree is a complete binary tree, or “NO” and the index of the root if not. There must be exactly one space separating the word and the number.
Sample Input 1:
9
7 8
– –
– –
– –
0 1
2 3
4 5
– –
– –
Sample Output 1:
YES 8
Sample Output 2:
8
– –
4 5
0 6
– –
2 3
– 7
– –
– –
Sample Output 2:
NO 1
题目分析
已知树所有节点的子节点信息,判断是否是完全二叉树,是打印YES+最后一个节点,否打印NO+根节点
解题思路
- 深度遍历树,将树中节点存储与数组中,根节点index=0,其左右子节点index分别为2i+1,2i+2
- 判断是否为完全二叉树
2.1 方式一:判断前后节点index是否相差1(若使用数组存储判断数组中有没有浪费的空闲位置,因为完全二叉树使用数组存储时中间没有空闲位置)
2.2 方式二:最大index==结点数n-1,若相等即为二叉树
2.3 方式三:BFS借助队列层级遍历树,完全二叉树中间不会遇到NULL
Code
Code 01
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
const int maxn = 30;
bool isRoot[maxn]; // 结点是否是根结点
struct Node {
int left, right; // 左孩子和右孩子的下标
} node[maxn]; // 二叉树结点静态数组
// input函数输入数据
int input() {
char id[3];
scanf("%s", id); // 输入结点编号
if(id[0] == '-') {
return -1; // 如果是'-',说明是空结点,返回-1
} else {
if(strlen(id) == 1) return id[0] - '0'; // 编号小于10
else return (id[0] - '0') * 10 + (id[1] - '0'); // 编号大于等于10
}
}
// findRoot函数找到根结点编号
int findRoot(int n) {
for(int i = 0; i < n; i++) {
if(isRoot[i]) { // isRoot为true时直接返回根结点编号i
return i;
}
}
}
// BFS函数判断完全二叉树,root为根结点编号,last是最后一个结点编号(注意引用),n为结点个数
bool BFS(int root, int &last, int n) {
queue<int> q; // 定义队列
q.push(root); // 根结点入队
while(n) { // 只要n不为0,即还没有访问完全部非空结点
int front = q.front(); // 队首结点front
q.pop(); // 弹出队首结点
if(front == -1) return false; // 访问到空结点,一定是非完全二叉树
n--; // 已访问的非空结点减少1
last = front; // 记录最后一个非空结点编号
q.push(node[front].left); // 左孩子入队(包括空结点)
q.push(node[front].right); // 右孩子入队(包括空结点)
}
return true; // 已经访问完所有非空结点,还没有碰到空结点,一定是完全二叉树
}
int main() {
int n;
scanf("%d", &n); // 输入结点个数
memset(isRoot, true, sizeof(isRoot)); //初始化所有结点都是根结点
for(int i = 0; i < n; i++) { // 对每一个结点
int left = input(), right = input(); // 输入左右孩子编号
isRoot[left] = isRoot[right] = false; // 这两个编号一定不是根结点
node[i].left = left; // 记录左孩子
node[i].right = right; // 记录右孩子
}
int root = findRoot(n), last; // 寻找根结点root,定义最后一个结点last
bool isCompleteTree = BFS(root, last, n); // 判断完全二叉树,同时记录最后一个结点last
if(isCompleteTree) { // 如果是完全二叉树
printf("YES %d\n", last); // 输出最后一个结点编号
} else {
printf("NO %d\n", root); // 否则输出根结点编号
}
return 0;
}
Code 02
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=20;
int flag[maxn];
struct node {
int data;
int index;
int left=-1;
int right=-1;
} nds[maxn];
void dfs(int root,int index) {
if(root==-1)return;
nds[root].index=index;
dfs(nds[root].left,2*index+1);
dfs(nds[root].right,2*index+2);
}
bool cmp(node &n1,node &n2){
return n1.index<n2.index;
}
int main(int argc,char * argv[]) {
int n;
scanf("%d",&n);
string f,r;
for(int i=0; i<n; i++) {
cin>>f>>r;
nds[i].data=i;
if(f!="-") {
nds[i].left=stoi(f);
flag[nds[i].left]=1;
}
if(r!="-") {
nds[i].right=stoi(r);
flag[nds[i].right]=1;
}
}
//find root;
int k=0;
while(k<n&&flag[k]==1)k++;
dfs(k,0);
sort(nds,nds+n,cmp);
/**
判断当前树是否为完全二叉树:
方式一:遍历所有节点,前后节点index相差1
方式二:完全二叉树的所有节点最大index为n
*/
bool iscbt=true;
for(int i=1; i<n; i++) {
if(nds[i].index-nds[i-1].index!=1) {
iscbt=false;
}
}
if(iscbt)printf("YES %d",nds[n-1].data);
else printf("NO %d", nds[0].data);
return 0;
}
Code 03
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=20;
int flag[maxn];
struct node {
int left=-1;
int right=-1;
} nds[maxn];
int max_n,max_i;
void dfs(int root,int index) {
if(root==-1)return;
if(max_i<index) {
max_i=index;
max_n=root;
}
dfs(nds[root].left,2*index+1);
dfs(nds[root].right,2*index+2);
}
int main(int argc,char * argv[]) {
int n;
scanf("%d",&n);
string f,r;
for(int i=0; i<n; i++) {
cin>>f>>r;
if(f!="-") {
nds[i].left=stoi(f);
flag[nds[i].left]=1;
}
if(r!="-") {
nds[i].right=stoi(r);
flag[nds[i].right]=1;
}
}
//find root;
int k=0;
while(k<n&&flag[k]==1)k++;
dfs(k,0);
/**
判断当前树是否为完全二叉树:
方式一:遍历所有节点,前后节点index相差1
方式二:完全二叉树的所有节点最大index为n
*/
if(max_i==n-1)printf("YES %d",max_n);
else printf("NO %d", k);
return 0;
}
PAT Advanced 1110 Complete Binary Tree (25) [完全⼆叉树]的更多相关文章
- [二叉树建树&完全二叉树判断] 1110. Complete Binary Tree (25)
1110. Complete Binary Tree (25) Given a tree, you are supposed to tell if it is a complete binary tr ...
- PAT甲级——1110 Complete Binary Tree (完全二叉树)
此文章同步发布在CSDN上:https://blog.csdn.net/weixin_44385565/article/details/90317830 1110 Complete Binary ...
- PAT 甲级 1110 Complete Binary Tree
https://pintia.cn/problem-sets/994805342720868352/problems/994805359372255232 Given a tree, you are ...
- 1110. Complete Binary Tree (25)
Given a tree, you are supposed to tell if it is a complete binary tree. Input Specification: Each in ...
- 1110 Complete Binary Tree (25 分)
Given a tree, you are supposed to tell if it is a complete binary tree. Input Specification: Each in ...
- PAT (Advanced Level) 1110. Complete Binary Tree (25)
判断一棵二叉树是否完全二叉树. #include<cstdio> #include<cstring> #include<cmath> #include<vec ...
- PAT甲题题解-1110. Complete Binary Tree (25)-(判断是否为完全二叉树)
题意:判断一个节点为n的二叉树是否为完全二叉树.Yes输出完全二叉树的最后一个节点,No输出根节点. 建树,然后分别将该树与节点树为n的二叉树相比较,统计对应的节点个数,如果为n,则为完全二叉树,否则 ...
- 【PAT甲级】1110 Complete Binary Tree (25分)
题意: 输入一个正整数N(<=20),代表结点个数(0~N-1),接着输入N行每行包括每个结点的左右子结点,'-'表示无该子结点,输出是否是一颗完全二叉树,是的话输出最后一个子结点否则输出根节点 ...
- 1110 Complete Binary Tree
1110 Complete Binary Tree (25)(25 分) Given a tree, you are supposed to tell if it is a complete bina ...
随机推荐
- canvas绘制表盘时钟
<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...
- mongoose 报错:DeprecationWarning: collection.ensureIndex is deprecated. Use createIndexes instead
mongoose.set('useCreateIndex', true) // 加上这个
- tomcat启动报错The JRE could not be found.Edit the server and change the JRE location
解决: 在Windows->Preferences->Server->Runtime Environments 选择Tomcat->Edit,在jre中选择相应的jdk版本,完 ...
- 《学习R》笔记:科学计算器、检查变量和工作区、向量、矩阵和数组、列表和数据框
一.第二章 科学计算器 要检查两个数字是否一样,要使用 all.equal() ,不要使用 == ,== 符号仅用于比较两个整型数是否存在相同 . > all.equal(sqrt(2)^2,2 ...
- HDU_4965 Fast Matrix Calculation 2014多校9 矩阵快速幂+机智的矩阵结合律
一开始看这个题目以为是个裸的矩阵快速幂的题目, 后来发现会超时,超就超在 M = C^(N*N). 这个操作,而C本身是个N*N的矩阵,N最大为1000. 但是这里有个巧妙的地方就是 C的来源其实 ...
- java开发 中台
中台就是接入层啊,一般有中台的都是比较大的项目,后台会分为很多模块,比如订单模块,比如会员模块,接入层需要做的就是对数据的封装,权限的过滤,以及各种安全什么的, 前台需要什么数据,接入层去对应的后台微 ...
- AS经济Essay写作想拿高分其实并不难!
在ALEVEL经济学这门课中,最难的部分应该属于essay question部分,因为很多题目的问题方式是很多变的,考官对于考生的期望值要求也是非常高的. 很多学生觉得自己清楚题目中的知识点,但是最终 ...
- 箭头函数this
箭头函数的this值是由包含它的函数(非箭头函数)来决定的,与包含的函数的this指向一致,如果包裹它的不是函数(直到找到最外层)则this指向全局对象 并且箭头函数的this是固定的,由定义它时所在 ...
- 吴裕雄--天生自然C++语言学习笔记:C++ 判断
判断结构要求程序员指定一个或多个要评估或测试的条件,以及条件为真时要执行的语句(必需的)和条件为假时要执行的语句(可选的). 下面是大多数编程语言中典型的判断结构的一般形式: 判断语句 if 语句 一 ...
- vue.js实现自定义输入分页
效果如下: html: <input type="text" value="1" v-model="page.page_my_selected& ...