(递归)P1036 选数
#include<stdio.h>
#include<math.h>
int x[20],n,k,i;
//判断是否质数
int isprime(int n){
for(i=2;i<=sqrt(n);i++){
if(n%i==0)return 0;
}
return 1;
}
*******************************************************************
//重点
//choose_left_num为剩余的k,already_sum为前面累加的和,start和end为全组合剩下数字的选取范围;调用递归生成全组合,在过程中逐渐把K个数相加,当选取的数个数为0时,直接返回前面的累加和是否为质数即可
//每次选数的时候,我要知道选数范围、累加之和以及剩余次数
int rule(int choose_left_num,int already_sum,int start,int end){ //自己做时就没有考虑递归传入选区范围
if(choose_left_num==0)return isprime(already_sum);
int sum=0; //有几个素数
for(i=start;i<=end;i++){ //没有加够k个数时,就会因i>end而结束循环
sum+=rule(choose_left_num-1,already_sum+x[i],i+1,end);
}
return sum;
}
/*自己写的(错误)
int p(int n,int c){
int s=0;
if(c==1){
return a[n];
}
for(;n<2;n++){
s+=a[n]+p(n+1,c-1);
}
return s;
}
*/
*****************************************************************
int main(){
scanf("%d %d",&n,&k);
for(i =0;i<n;i++)scanf("%d",&x[i]);
printf("%d",rule(k,0,0,n-1));//调用递归解决问题
}
(递归)P1036 选数的更多相关文章
- luogu P1036 选数 x
P1036 选数 题目描述 已知 n 个整数 x1,x2,…,xn,以及一个整数 k(k<n).从 n 个整数中任选 k 个整数相加,可分别得到一系列的和.例如当 n=4,k=3,4 个整数分别 ...
- 【搜索】【入门】洛谷P1036 选数
题目描述 已知 n个整数x1,x2,…,xn,以及1个整数k(k<n).从nn个整数中任选kk个整数相加,可分别得到一系列的和. 例如当n=4,k=3,4个整数分别为3,7,12,19时, ...
- p1036 选数(不详细勿看,递归)
题目:传送门 这题,不会做,而且看了好久才看懂题解的,然后在题解的基础上补了一个 if(start>end) return 0 感觉这样对于我更直观 转载自:大神博客的传送门,点击进入 先声明, ...
- 洛谷P1036 选数 题解 简单搜索/简单状态压缩枚举
题目链接:https://www.luogu.com.cn/problem/P1036 题目描述 已知 \(n\) 个整数 \(x_1,x_2,-,x_n\) ,以及 \(1\) 个整数 \(k(k& ...
- P1036 选数 题解
题目链接https://www.luogu.org/problemnew/show/P1036 题目描述 已知 nnn 个整数 x1,x2,-,xnx_1,x_2,-,x_nx1,x2,-,xn ...
- 洛谷 P1036 选数
嗯.... 这种类型的题在新手村出现还是比较正常的, 但是不知道为什么它的分类竟然是过程函数与递归!!!(难道这不是一个深搜题吗??? 好吧这就是一道深搜题,所以千万别被误导... 先看一下题目: 题 ...
- P1036 选数(DFS)
题目 https://www.luogu.org/problemnew/show/P1036 思路 搜索,使用递归实现dfs,所有数字遍历一遍,当取遍所有数组的index(扫了一遍,并非一定是选取了) ...
- 洛谷P1036选数(素数+组合数)
题目链接:https://www.luogu.org/problemnew/show/P1036 主要考两个知识点:判断一个数是否为素数.从n个数中选出m个数的组合 判断一个数是否为素数: 素数一定是 ...
- 洛古P1036 选数 题解
[我是传送门] 这是一道很经典的深搜与回溯(难度一般) 可是就这个"普及-" 让本蒟蒻做了一晚上+半个上午(实际我不会深搜回溯,全靠框架+去重); 下面让我分享下本蒟蒻的(全排列+ ...
随机推荐
- 课程报名 | 基于模型训练平台快速打造 AI 能力
我们常说的 AI 通用能力往往不针对具体的行业应用,而是主要解决日常或者泛化的问题,很多技术企业给出的方案是通用式的,比如通用文字识别,无论识别身份证.驾驶证.行驶证等,任何一张图片训练后的模型都会尽 ...
- JuJu团队11月26号工作汇报
JuJu团队11月26号工作汇报 JuJu Scrum 团队成员 今日工作 剩余任务 困难 于达 对原始文本进行预处理, 并转换成可被julia读入的格式 完成预处理并用julia读入. 读入后按 ...
- SpringBoot+Jpa测试自增时报错Springboot-jpa Table 'sell.hibernate_sequence' doesn't exist
解决办法: @GeneratedValue(strategy = GenerationType.IDENTITY) 如图所示:
- 开源DDD设计模式框架YMNNetCoreFrameWork第二篇-增加swagger,数据库迁移,增加权限模型
1.框架去掉application层,把HOst作为application层 2.增加swagger插件 3.增加Asp.net Identity身份验证 源代码地址:https://github. ...
- String巩固
About String in Java 如今做了一个重大决定,不定期温习The Basement Of Java String对象的认知简述 首先 String不属于 8种基本数据类型, Strin ...
- hdu 4300 Clairewd’s message 字符串哈希
Clairewd’s message Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- 每天一点点之vue框架开发 - vue 动态替换路由(地址栏)参数
import merge from 'webpack-merge': // 修改原有参数 this.$router.push({ query:merge(this.$route.query,{'max ...
- POJ 1276:Cash Machine 多重背包
Cash Machine Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 30006 Accepted: 10811 De ...
- JS元素的左右移动
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- HTML笔记及案例
- 了解什么是标记语言 - 了解HTML主要特性,主要变化以及发展趋势 - 了解HTML的结构标签 - 掌握HTML的主要标签(字体,图片,列表,链接,表单等标签) ### 1.网站信息页面 #### ...