(递归)P1036 选数
#include<stdio.h>
#include<math.h>
int x[20],n,k,i;
//判断是否质数
int isprime(int n){
for(i=2;i<=sqrt(n);i++){
if(n%i==0)return 0;
}
return 1;
}
*******************************************************************
//重点
//choose_left_num为剩余的k,already_sum为前面累加的和,start和end为全组合剩下数字的选取范围;调用递归生成全组合,在过程中逐渐把K个数相加,当选取的数个数为0时,直接返回前面的累加和是否为质数即可
//每次选数的时候,我要知道选数范围、累加之和以及剩余次数
int rule(int choose_left_num,int already_sum,int start,int end){ //自己做时就没有考虑递归传入选区范围
if(choose_left_num==0)return isprime(already_sum);
int sum=0; //有几个素数
for(i=start;i<=end;i++){ //没有加够k个数时,就会因i>end而结束循环
sum+=rule(choose_left_num-1,already_sum+x[i],i+1,end);
}
return sum;
}
/*自己写的(错误)
int p(int n,int c){
int s=0;
if(c==1){
return a[n];
}
for(;n<2;n++){
s+=a[n]+p(n+1,c-1);
}
return s;
}
*/
*****************************************************************
int main(){
scanf("%d %d",&n,&k);
for(i =0;i<n;i++)scanf("%d",&x[i]);
printf("%d",rule(k,0,0,n-1));//调用递归解决问题
}
(递归)P1036 选数的更多相关文章
- luogu P1036 选数 x
P1036 选数 题目描述 已知 n 个整数 x1,x2,…,xn,以及一个整数 k(k<n).从 n 个整数中任选 k 个整数相加,可分别得到一系列的和.例如当 n=4,k=3,4 个整数分别 ...
- 【搜索】【入门】洛谷P1036 选数
题目描述 已知 n个整数x1,x2,…,xn,以及1个整数k(k<n).从nn个整数中任选kk个整数相加,可分别得到一系列的和. 例如当n=4,k=3,4个整数分别为3,7,12,19时, ...
- p1036 选数(不详细勿看,递归)
题目:传送门 这题,不会做,而且看了好久才看懂题解的,然后在题解的基础上补了一个 if(start>end) return 0 感觉这样对于我更直观 转载自:大神博客的传送门,点击进入 先声明, ...
- 洛谷P1036 选数 题解 简单搜索/简单状态压缩枚举
题目链接:https://www.luogu.com.cn/problem/P1036 题目描述 已知 \(n\) 个整数 \(x_1,x_2,-,x_n\) ,以及 \(1\) 个整数 \(k(k& ...
- P1036 选数 题解
题目链接https://www.luogu.org/problemnew/show/P1036 题目描述 已知 nnn 个整数 x1,x2,-,xnx_1,x_2,-,x_nx1,x2,-,xn ...
- 洛谷 P1036 选数
嗯.... 这种类型的题在新手村出现还是比较正常的, 但是不知道为什么它的分类竟然是过程函数与递归!!!(难道这不是一个深搜题吗??? 好吧这就是一道深搜题,所以千万别被误导... 先看一下题目: 题 ...
- P1036 选数(DFS)
题目 https://www.luogu.org/problemnew/show/P1036 思路 搜索,使用递归实现dfs,所有数字遍历一遍,当取遍所有数组的index(扫了一遍,并非一定是选取了) ...
- 洛谷P1036选数(素数+组合数)
题目链接:https://www.luogu.org/problemnew/show/P1036 主要考两个知识点:判断一个数是否为素数.从n个数中选出m个数的组合 判断一个数是否为素数: 素数一定是 ...
- 洛古P1036 选数 题解
[我是传送门] 这是一道很经典的深搜与回溯(难度一般) 可是就这个"普及-" 让本蒟蒻做了一晚上+半个上午(实际我不会深搜回溯,全靠框架+去重); 下面让我分享下本蒟蒻的(全排列+ ...
随机推荐
- J - Worker
Avin meets a rich customer today. He will earn 1 million dollars if he can solve a hard problem. The ...
- 干干净净的grep
用grep -rn "xxxx" ./ 搜索. 有时候出现大量的 错误信息 主要有 1.Is a directory 2.no such file or directory 前 ...
- redis在.Net程序中使用
1.设置访问密码 config 2.连接redis服务器 private static string redisHost = ConfigHelper.GetAppSetting("redi ...
- 【CF1154G】Minimum Possible LCM
题意 给你 \(n\) 个数 \(a_i\) ,求出 \(\text{lcm}\) 最小的一对数. \(n\le 10^6, a_i\le 10^7\) 题解 直接枚举 ,找到当前数最小的两个倍数,统 ...
- ubuntu18.04 基于Hadoop3.1.2集群的Hbase2.0.6集群搭建
前置条件: 之前已经搭好了带有HDFS, MapReduce,Yarn 的 Hadoop 集群 链接: ubuntu18.04.2 hadoop3.1.2+zookeeper3.5.5高可用完全分布式 ...
- CentOS7上防火墙操作
firewalld打开关闭防火墙与端口 启动: systemctl start firewalld 关闭: systemctl stop firewalld 查看状态: systemctl statu ...
- Sklearn 预处理数据
## 版权所有,转帖注明出处 章节 SciKit-Learn 加载数据集 SciKit-Learn 数据集基本信息 SciKit-Learn 使用matplotlib可视化数据 SciKit-Lear ...
- NSPredicate实现数据筛选
一:基本语法 1.什么是NSPredicate apple官方文档这样写的: The NSPredicate class is used to define logical conditions us ...
- python转换ascii码
字符转数字 ord("A") 数字转字符 chr(65)
- 【pwnable.kr】col
pwnable从入门到放弃第二题, ssh col@pwnable.kr -p2222 (pw:guest) 同样是登录,然后看到了col.c.col.flag三个文件,读一下col.c #inclu ...