DP+容斥 BZOJ1042
1042: [HAOI2008]硬币购物
Time Limit: 10 Sec Memory Limit: 162 MB
Submit: 2558 Solved: 1539
[Submit][Status][Discuss]
Description
硬币购物一共有4种硬币。面值分别为c1,c2,c3,c4。某人去商店买东西,去了tot次。每次带di枚ci硬币,买s
i的价值的东西。请问每次有多少种付款方法。
Input
第一行 c1,c2,c3,c4,tot 下面tot行 d1,d2,d3,d4,s,其中di,s<=100000,tot<=1000
Output
每次的方法数
Sample Input
3 2 3 1 10
1000 2 2 2 900
Sample Output
27
typedef long long ll;
int c[5];
ll dp[110000];
struct{long long operator[](const int &pos){return pos<0?0:dp[pos];}}f;
int main(){
int t;
scanf("%d%d%d%d%d",c+1,c+2,c+3,c+4,&t);
dp[0]=1;
for(int i=1;i<=4;++i)
for(int j=0;j<=100000;++j)
if(j+c[i]<=100000) dp[j+c[i]]+=dp[j];
while(t--){
int d[5],s;
scanf("%d%d%d%d%d",d+1,d+2,d+3,d+4,&s);
long long ans=f[s];
ans-=f[s-(d[1]+1)*c[1]];
ans-=f[s-(d[2]+1)*c[2]];
ans-=f[s-(d[3]+1)*c[3]];
ans-=f[s-(d[4]+1)*c[4]];
ans+=f[s-(d[1]+1)*c[1]-(d[2]+1)*c[2]];
ans+=f[s-(d[1]+1)*c[1]-(d[3]+1)*c[3]];
ans+=f[s-(d[1]+1)*c[1]-(d[4]+1)*c[4]];
ans+=f[s-(d[2]+1)*c[2]-(d[3]+1)*c[3]];
ans+=f[s-(d[2]+1)*c[2]-(d[4]+1)*c[4]];
ans+=f[s-(d[3]+1)*c[3]-(d[4]+1)*c[4]];
ans-=f[s-(d[1]+1)*c[1]-(d[2]+1)*c[2]-(d[3]+1)*c[3]];
ans-=f[s-(d[1]+1)*c[1]-(d[2]+1)*c[2]-(d[4]+1)*c[4]];
ans-=f[s-(d[1]+1)*c[1]-(d[3]+1)*c[3]-(d[4]+1)*c[4]];
ans-=f[s-(d[2]+1)*c[2]-(d[3]+1)*c[3]-(d[4]+1)*c[4]];
ans+=f[s-(d[1]+1)*c[1]-(d[2]+1)*c[2]-(d[3]+1)*c[3]-(d[4]+1)*c[4]];
printf("%lld\n",ans);
}
}
DP+容斥 BZOJ1042的更多相关文章
- bzoj 3622 DP + 容斥
LINK 题意:给出n,k,有a,b两种值,a和b间互相配对,求$a>b$的配对组数-b>a的配对组数恰好等于k的情况有多少种. 思路:粗看会想这是道容斥组合题,但关键在于如何得到每个a[ ...
- 【BZOJ 4665】 4665: 小w的喜糖 (DP+容斥)
4665: 小w的喜糖 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 94 Solved: 53 Description 废话不多说,反正小w要发喜 ...
- [Luogu P1450] [HAOI2008]硬币购物 背包DP+容斥
题面 传送门:https://www.luogu.org/problemnew/show/P1450 Solution 这是一道很有意思的在背包里面做容斥的题目. 首先,我们可以很轻松地想到暴力做背包 ...
- 【BZOJ1042】【DP + 容斥】[HAOI2008]硬币购物
Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. Input 第一 ...
- BZOJ1042:[HAOI2008]硬币购物(DP,容斥)
Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. Input 第一 ...
- bzoj1042: [HAOI2008]硬币购物(DP+容斥)
1600+人过的题排#32还不错嘿嘿 浴谷夏令营讲过的题,居然1A了 预处理出f[i]表示购买价值为i的东西的方案数 然后每次询问进行一次容斥,答案为总方案数-第一种硬币超限方案-第二种超限方案-第三 ...
- HDU 5838 (状压DP+容斥)
Problem Mountain 题目大意 给定一张n*m的地图,由 . 和 X 组成.要求给每个点一个1~n*m的数字(每个点不同),使得编号为X的点小于其周围的点,编号为.的点至少大于一个其周围的 ...
- Codeforces 611C New Year and Domino DP+容斥
"#"代表不能放骨牌的地方,"."是可以放 500*500的矩阵,q次询问 开两个dp数组,a,b,a统计横着放的方案数,b表示竖着放,然后询问时O(1)的,容 ...
- [BZOJ 1042] [HAOI2008] 硬币购物 【DP + 容斥】
题目链接:BZOJ - 1042 题目分析 首先 Orz Hzwer ,代码题解都是看的他的 blog. 这道题首先使用DP预处理,先求出,在不考虑每种硬币个数的限制的情况下,每个钱数有多少种拼凑方案 ...
随机推荐
- 第八章服务器raid及配置实战
版本 特点 磁盘个数 可用空间 故障磁盘数 应用环境 RAID0 读写速度快,数据容易丢失 两个 全部 一块 测试,临时性 RAID1 读写速度慢,数据可靠 至少两个,可以2的倍数 总容量的一半 ...
- js 函数的防抖(debounce)与节流(throttle) 带 插件完整解析版 [helpers.js]
前言: 本人纯小白一个,有很多地方理解的没有各位大牛那么透彻,如有错误,请各位大牛指出斧正!小弟感激不尽. 函数防抖与节流是做什么的?下面进行通俗的讲解. 本文借鉴:h ...
- 初篇:我与Linux
据悉,红帽认证将于本年的8月份更换Rhel7为Rhel8.所以我想趁这次机会搏一搏. 我个人是初中就神仰Linux已久,只不过那个时候的我只知道Linux系统,不知道有什么区分.奈何那 ...
- 详解Linux 安装 JDK、Tomcat 和 MySQL(图文并茂)
https://www.jb51.net/article/120984.htm
- ROC-RK3328-CC开源主板运行LibreELEC系统
LibreELEC是运行Kodi媒体中心的轻量级操作系统,基于Linux内核发行,系统为适配Kodi运行环境,做了许多优化和精简,运行速度快,操作简单.是一款很优秀的多功能播放器操作系统. ROC-R ...
- Java之JVM(初学者)
学习Java的第一次总结 1.Java程序的编译和执行 通过上图,我们轻易得出java执行过程:由javac编译为字节码文件,通过JVM转换为底层操作系统可识别的命令操作. 注意:①Java跨平台的始 ...
- 数学--数论--HDU1792A New Change Problem(GCD规律推导)
A New Change Problem Problem Description Now given two kinds of coins A and B,which satisfy that GCD ...
- 如何用Hexo搭建个人博客
以前用Wordpress搭建过一个博客网站,Wordpress虽然安装简单,功能强大,但是对于个人建站来说有点复杂了.最近发现用Hexo建站很流行,于是将网站从Wordpress迁移到了Hexo. H ...
- Spring Cloud 学习 之 Spring Cloud Eureka(架构)
Spring Boot版本:2.1.4.RELEASE Spring Cloud版本:Greenwich.SR1 文章目录 Eureka服务治理基础架构的三个核心要素: 服务治理机制: 服务提供者: ...
- Pytorch 四种边界填充方式(Padding)
1. 选用卷积之前填充(强烈建议) 小生非常推荐大家不再使用卷积所带的填充方式,虽然那种方式简单,但缺陷太多.① 不能根据自己的需要来决定上与下填充不等的边界,左右填充不等的边界:② 边界填充零容易出 ...