题目传送门点我传送

Ⅰ.字典树+树型DP

非常奇妙的一种解法

第一部分:构建树

先对来的单词读入,插入字典树

然后对于一颗字典树,其实是有很多无用边的,所以我们需要删去一些边

删去非单词节点和非单词节点之间的边,其实就是下面这个函数

void rebuild(int now,int fa)
{
if(isok[now])//当前节点是单词
{
vec[fa].push_back(now);//连边
fa=now;//换爸爸了
}
for(int i=1;i<=26;i++)
{
if(!tree[now][i]) continue;
rebuild(tree[now][i],fa);//递归
}
}

第二部分:树型DP

对于每一棵子树而言,右选和不选两种方案

选,则子树上的节点都不能再选,即为

\(dp[i][1]=1\)

不选,则子树上的节点可选可不选

\(f[i][0] = \prod_{j\in son[i]}(f[j][0]+f[j][1])\)

因为是计算方案,决策之间是彼此联系的,所以是相乘

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=5009;
int n;
int tree[maxn][27];int isok[maxn],tot;
void insert(string s)
{
int now=0;
for(int i=0;i<s.length();i++)
{
int k=s[i]-'a'+1;
if(!tree[now][k])
tree[now][k]=++tot;//没有节点,新创建一个节点
now=tree[now][k];//去下一个节点
}
isok[now]=1;//标记单词
}
vector<int>vec[maxn];
void rebuild(int now,int fa)
{
if(isok[now])//当前节点是单词
{
vec[fa].push_back(now);//连边
fa=now;//换爸爸了
}
for(int i=1;i<=26;i++)
{
if(!tree[now][i]) continue;
rebuild(tree[now][i],fa);//递归
}
}
ll dp[maxn][3];
void ddp(int now)//开始DP
{
dp[now][1]=dp[now][0]=1;
for(int i=0;i<vec[now].size();i++)//遍历所有儿子
{
int v=vec[now][i];
ddp(v);
dp[now][0]=dp[now][0]*(dp[v][0]+dp[v][1]);//不选父节点
}
}
int main()
{
cin>>n;
string s;
for(int i=1;i<=n;i++) cin>>s,insert(s);
for(int i=1;i<=26;i++)
{
if(!tree[0][i]) continue;
rebuild(tree[0][i],0);//有结点才向下建树
}
ddp(0);//树型DP
cout<<dp[0][0];
}

Ⅱ.线性DP

我们预处理一个\(f[i][j]\)表示第i个单词与第j个单词是否能共存,

然后考虑一个\(dp[i]\)表示在前i个单词中,必须包含第i个单词的子集个数,首先\(dp[i]=1\)(只包含自己一个元素的一个子集方案数)

那么如果前面存在一个\(j<i\),并且\(f[i][j]=1\)(即i与j可以共存),那么j所有的子集方案数加上一个i元素就形成了对应新的方案,那么状态就由j转移到i了,最后,直接累计\(dp[1....n]\)即可,当然最后还要算上空集哟。

但是,这么做的前提是单词必须先排序

为什么呢??因为在\(dp[j]\)的方案中,可能有是\(a[i]\)前缀的单词,那我们就不能转移

但如果按照字典序排过之后,就不存在这种问题。

#include <bits/stdc++.h>
using namespace std;//dp[i]为必须包括i的个数
typedef long long ll;
ll vis[59][59],dp[59];
string a[59];
bool pan(int l,int r)
{
int p1=0,p2=0;
while(p1<a[l].length()&&p2<a[r].length())
if(a[l][p1++]!=a[r][p2++]) return false;
return true;
}
int main()
{
int n;
cin>>n;
for(int i=1;i<=n;i++)
cin>>a[i],dp[i]=1;
sort(a+1,a+1+n);
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
if(pan(i,j))
vis[i][j]=1;
}
for(int i=2;i<=n;i++)
{
for(int j=1;j<i;j++)
{
if(vis[i][j]==0)//可以放一起
dp[i]+=dp[j];
}
}
ll ans=0;
for(int i=1;i<=n;i++) ans+=dp[i];
cout<<ans+1;
}

P1666前缀单词的更多相关文章

  1. P1666 前缀单词

    P1666 前缀单词 tire树上跑dp 首先将trie树建出来,然后对于每个节点.考虑他的子节点. 子节点的方案数都互不干扰,所以子节点与其他子节点的的方案数可以利用乘法原理算出来. 然后如果这个节 ...

  2. 洛谷 P1666 前缀单词 题解

    题意:给n个单词,如果单词a为单词b的前缀则a,b不能共存,问能共存的集合数(包括空集) 一道dp题,排序后判断,f[i][j]表示i和j是否能共存,f[i][j]=1表示能共存,初始化dp[i]=1 ...

  3. 【luogu P1666 前缀单词】 题解

    题目链接:https://www.luogu.org/problemnew/show/P1666 10.13考试题 当时没想出来,觉得是要用trie做,在trie上跑一个树形dp 结果是写了个子集枚举 ...

  4. Luogu P1666 前缀单词

    校内资格赛题目,差点高一就要\(\tt{AFO}\)了 30分思路 对30%的数据,满足$1≤n≤10 $ 所以我们可以子集枚举,实际得分40pts #include<iostream> ...

  5. 【洛谷 P1666】 前缀单词 (Trie)

    题目链接 考试时暴搜50分...其实看到"单词","前缀"这种字眼时就要想到\(Trie\)的,哎,我太蒻了. 以一个虚点为根,建一棵\(Trie\),然后\( ...

  6. [luoguP1666] 前缀单词(DP)

    传送门 先把所有字符串按照字典序排序一下 会发现有字符串x和y(x再y前面,即字典序小),如果x不是y的前缀,那么在x前面不是x前缀的字符串也不是y的前缀 这样就可以DP了 f[i][j]表示前i个字 ...

  7. [LeetCode] Word Squares 单词平方

    Given a set of words (without duplicates), find all word squares you can build from them. A sequence ...

  8. HDU 1251 字典树(前缀树)

    题目大意 :Ignatius最近遇到一个难题,老师交给他很多单词(只有小写字母组成,不会有重复的单词出现),现在老师要他统计出以某个字符串为前缀的单词数量(单词本身也是自己的前缀).(单词互不相同) ...

  9. 如何区别英语前缀pri,pro,per,pre?

    pri- 前缀pri-来源于拉丁语的这几个形容词“prim.us”, “prim.a”, “prim.um”,表示“第一的”的意思,和“pri.or”, “pri.or”, “pri.us”,是“优先 ...

随机推荐

  1. elementUI踩坑

    1.滚动条消失,body中莫名出现行内样式overflow: hidden; 在做某个图片上传,显示功能出现的问题.控制台并没有报错,代码也并无相关操作 必须重新刷新页面之后滚动条才会显示出来 几天后 ...

  2. C语言折半查找法练习题冒泡排序

    C语言折半查找法练习题 折半查找法: 折半查找法是效率较高的一种查找方法.假设有已经按照从小到大的顺序排列好的五个整数num[0]~num[4],要查找的数是key,其基本思想是: 设查找数据的范围下 ...

  3. AJ学IOS(52)多线程网络之GCD下单例设计模式

    AJ分享,必须精品 单例模式 1:单例模式的作用 可以保证在程序运行过程,一个类只有一个实例,而且该实例易于供外界访问 从而方便地控制了实例个数,并节约系统资源 单例模式的使用场合 在整个应用程序中, ...

  4. 掷骰子 dp

    B. 掷骰子 单点时限: 2.0 sec 内存限制: 512 MB 骰子,中国传统民间娱乐用来投掷的博具,早在战国时期就已经被发明. 现在给你 n 个骰子,求 n 个骰子掷出点数之和为 a 的概率是多 ...

  5. testlink数据表分析

    创建一个项目test node_types: 节点类型,这是一个固定的表 rights: 权限表,用户的操作权限 role_rights: 角色和权限关系表 roles: 角色表 testprojec ...

  6. 1-JVM基础

    1-JVM基础 java源码文件,通过javac 转换成class文件. 找到.java文件 词法分析器 tokens流 语法分析器 语义分析器 字节码生成器 转成.class文件 装载 根据全限定路 ...

  7. 解决centos ping不通外网

    先确认三件事: 一.ip 二.网关 三.dns 一就不说了,设置好本地ip和掩码就行了,二网关   添加默认网关,命令:route add defaule gw 192.168.1.1 这是 你用ro ...

  8. 【Django 2.2文档系列】Model 外键中的on_delete参数用法

    场景 我们用Django的Model时,有时候需要关联外键.关联外键时,参数:on_delete的几个配置选项到底是干嘛的呢,你知道吗? 参数介绍 models.CASCADE 级联删除.Django ...

  9. Playbook中标签的使用(五)

    一个playbook文件中,执行时如果想执行某一个任务,那么可以给每个任务集进行打标签,这样在执行的时候可以通过-t选择指定标签执行, 还可以通过--skip-tags选择除了某个标签外全部执行等 [ ...

  10. D3.js 力导向图的显示优化

    D3.js 作为一个前端,说到可视化除了听过 D3.js 的大名,常见的可视化库还有 ECharts.Chart.js,这两个库功能也很强大,但是有一个共同特点是封装层次高,留给开发者可设计和控制的部 ...