「面试指南」JS数组Array常用算法,Array算法的一般解答思路
先看一道面试题
在 LeetCode 中有这么一道简单的数组算法题:
// 给定一个整数数组 nums 和一个目标值 target,
// 请你在该数组中找出和为目标值的那两个整数,并返回他们的数组下标。
// 你可以假设每种输入只会对应一个答案。
// 但是,你不能重复利用这个数组中同样的元素。
// 示例:
// 给定 nums = [2, 7, 11, 15], target = 9;
// 因为 nums[0] + nums[1] = 2 + 7 = 9,
// 所以返回 [0, 1]。
对于上述的面试题,对于我们前端开发,不同的解法,有着不同的技术水准。
那么到底有几种常用解法?实践并汇总了以下几种方法:
- 暴力双 for 循环解法;
- 单循环 indexOf 优化;
- 单循环 obj 优化;
- 单循环 map 优化;
- 单循环尾递归优化;
暴力双 for 循环破解
// 两层循环判断,找出当前元素cur与target-cur的,满足放入result结果中
function twoSum(nums, target) {
for (let i = 0; i < nums.length; i++) {
const cur = nums[i];
for (let j = 0; j < nums.length; j++) {
const others = nums[j];
// 因为是不可以重复利用同样的元素,所以i!==j;
if (others == target - cur && i !== j) {
// 因为是我们只找出一个结果,所以我们找到后,直接返回结果
return [i, j];
}
}
}
// 如果未找到,返回[]
return [];
}
// 测试结果
let result = twoSum([2, 7, 11, 15], 9);
console.log(result); // [0,1] 2,7 满足结果,所以返回其下标[0,1]
时间复杂度:O(n^2),可能看似感觉还不错,但是执行时间长,内存占用也不小,当 nums 数组足够大时,它的性能瓶颈就会体现出来。
leetCood 测试结果:

单循环 indexOf 优化;
// 单循环判断,找出当前元素cur,与target-cur是否相等,满足放入result结果中
function twoSum(nums, target) {
for (let i = 0; i < nums.length; i++) {
let cur = nums[i],
others = target - cur, // 期望目标值
others_index = nums.indexOf(others);
// 判断期望目标值是否在nums中,因为不能是它本身,要校验两个下标不能相等
if (others_index > -1 && i !== others_index) {
// 因为是我们只找出一个结果,所以我们找到后,直接返回结果
return [i, others_index];
}
}
// 如果未找到,返回[]
return [];
}
// 测试结果
let result = twoSum([2, 7, 11, 15], 9);
console.log(result); // [0,1] 2,7 满足结果,所以返回其下标[0,1]
时间复杂度:O(n^2),因为 indexOf()方法的时间复杂度为 O(n),所以和上述暴力破解只是写法上区别了。执行时间,内存占用依然存在可优化的空间。
leetCood 测试结果:

单循环 obj 优化:
使用 obj,边存边比较目标差值是否在 obj 中。如果存在,直接返回下标,不存在继续边存边比,直到结束循环;
function twoSum(nums, target) {
let obj = {};
for (let i = 0; i < nums.length; i++) {
if (obj[target - nums[i]] >= 0) {
return [obj[target - nums[i]], i];
}
obj[nums[i]] = i;
}
return [];
}
// 测试结果
let result = twoSum([2, 7, 11, 15], 9);
console.log(result); // [0,1] 2,7 满足结果,所以返回其下标[0,1]
时间复杂度:O(n),由于对象键值对 key-value 的优越性,对于作为查找类的算法很有优势。时间复杂度降为原有的一倍,性能会好一些。
leetCood 测试结果(较上优化了 90ms 左右):

单循环 map 优化:
上述我们使用了一个对象作为查找的依据,同样的我们可以根据 map 替换,来破解。
function twoSum(nums, target) {
let map = new Map();
// 遍历nums 放入 map中
for (let i = 0; i < nums.length; i++) {
let value = nums[i];
map.set(value, i);
}
for (let j = 0; j < nums.length - 1; j++) {
if (map.has(target - nums[j]) && map.get(target - nums[j]) != j) {
return [j, map.get(target - nums[j])];
}
}
// 不符合,返回空数组
return [];
}
// 测试结果
let result = twoSum([2, 7, 11, 15], 9);
console.log(result); // [0,1] 2,7 满足结果,所以返回其下标[0,1]
时间复杂度:O(2n),第一次循环时间度 n,第二次为 n*1,故为 O(2n), 由于 map 的特殊数据结构,故作为查找类的算法,相比 obj 具有绝对优势。
leetCood 测试结果(较上再次优化了 近 30ms):

obj 尾递归优化;
我们对于上面单循环 obj 做下改造,利用尾递归的方式破解:
var twoSum = function(nums, target, i = 0, objs = {}) {
const obj = objs; //存在期望数字;
// 判断obj中是否
if (obj[target - nums[i]] >= 0) {
// 存在直接返回两值的下标;
return [obj[target - nums[i]], i];
} else {
// 不存在,存入obj
obj[nums[i]] = i;
// 递归继续查找
if (i < nums.length - 1) {
// i 自增
i++;
return twoSum(nums, target, i, obj);
} else {
// 递归结束,未查询到结果
return [];
}
}
};
时间复杂度:O(n),假设我们查找到,则递归的次数应该是最多的为 n,所以时间复杂度 O(n);
递归相比于 for 循环是一种更近层次的查找,在树结构数据、多维数组中我们常用递归思想来处理数据。
leetCood 测试结果(结果为 52ms),多次执行测试大都在 60ms 上下,说明了递归思想的优势:

map 尾递归优化破解;
我们同时对单循环 map 的也是用递归,看看会发生什么结果?
var twoSum = function(nums, target, i = 0, maps = new Map()) {
const map = maps;
// 判断obj中是否
if (map.has(target - nums[i])) {
// 存在直接返回两值的下标;
return [map.has(target - nums[i]), i];
} else {
// 不存在,存入obj
map.set([nums[i]], i);
// 递归继续查找
if (i < nums.length - 1) {
// i 自增
i++;
return twoSum(nums, target, i, map);
} else {
// 递归结束,未查询到结果
return [];
}
}
};
时间复杂度:O(n),假设我们查找到,则递归的次数为 n,所以时间复杂度也为 O(n);
leetCood 测试结果(最快结果为 44ms),多次执行测试大都在 60ms 上下,与上一个性能相似:

当然,测试结果只是一个参考可能不太准确,不过通过多次测试也是可以看出他们之间的差距的。
总结:
以上我们使用了暴力破解、单循环 obj、单循环 map、obj 尾递归、map 尾递归做了对比。
一般对于数组的算法,几乎都可以使用上次思路来解决,当然我们要知道衡量算法指标时间复杂度 O()、空间复杂度 S()。
空间复杂度:算法的空间复杂度通过计算算法所需的存储空间实现,算法的空间复杂度的计算公式记作:S(n)=O(f(n)),其中,n 为问题的规模,f(n)为语句关于 n 所占存储空间的函数。
通常,我们都是用“时间复杂度”来指运行时间的需求,是用“空间复杂度”指空间需求。
当直接要让我们求“复杂度”时,通常指的是时间复杂度。不过,在一定程度上我们也要考虑算法所需存储空间。
在面试中与实际工作中,简单数组算法的几点经验之谈:
数组去重:使用单循环,结合 obj 或 map 做中间辅助判断;
数组扁平化:使用递归;
树结构的查找与处理:单循环使用 obj/map 做中间辅助判断,同时结合递归思想;
数组的特定重组:除了上述思想外,可能要结合数组常用方法:indexOf(),map(),forEach()或数组高阶函数 filter(),reduce(),sort(),every(),some()等。本文只是抛出一个算法的思路,不再做长篇大论的演示。
// 递归思路
// 最简递归:for循环形式
function recursive_simple(array) {
for (let i = 0; i < array.length; i++) {
const item = array[i];
// 进入递归ifEntry:递归条件,subArray:递归参数
if (ifEntry) {
// do something
recursive_simple(subArray);
} else {
// 跳出递归
// do something
}
}
}
// 尾递归
function recursive_tail(array, i = array.length - 1, others) {
const other = others;
//do something
// 进入递归,others:其他参数,可以obj、map等一些中间临时变量
if (i > 0) {
// do something
console.log(i, array[i]);
i--;
// 递归调用
return recursive_tail(array, i, others);
}
}
涉及方法:
indexOf():检测 searchString 在 string、array 是否存在,不过时间复杂度 O(n);
map:数组的遍历,返回新的数组,需要手动 return 当前 item;对于数组中对象的 key-value 改写比较适合,时间复杂度 O(n);
forEach:改写当前数组,不需要 return,对于直接改写某个数组比较合适;
filter:过滤函数,对于过滤数组中符合某个条件的子项比较合适;
reduce:接收一个函数作为累加器(accumulator),返回具体数值,对于需要对数组某些子项操作的比较合适,比如求和,斐波那契数列等的处理,
reduce(function(total, currentValue, currentIndex, arr), initialValue);
sort:适合数组中,复杂比较关系的,一般用于排序用途;
every:数组迭代方法,对数组中每一项运行给定函数,如果该函数对每一项返回 true,则返回 true;
some:数组迭代方法,对数组中每一项运行给定函数,如果该函数对任一项返回 true,则返回 true,与 every 有区别,如其名:every:每一项,some:任一项;
微信公众号:前端开发那些事儿,欢迎关注!

「面试指南」JS数组Array常用算法,Array算法的一般解答思路的更多相关文章
- 「面试指南」解读JavaScript原始数据类型
JavaScript 有 7 种原始数据类型: String(字符型) Number(数值型) Boolean(布尔值型) Undefined Null Object(对象型) Symbol(符号型, ...
- 面试指南」JS 模块化、组件化、工程化相关的 15 道面试题
JS 模块化.组件化.工程化相关的 15 道面试题 1.什么是模块化? 2.简述模块化的发展历程? 3.AMD.CMD.CommonJS 与 ES6 模块化的区别? 4.它们是如何使用的? 5.exp ...
- Js数组的常用的方法概述
学习JS的同学们,也曾对数组进行学习掌握,所以我也把数组中常用的方法列举下来,相互学习 不多废话,直接上正文 . 快乐的分割线... 一.对象继承的方法 数组是一种特殊 ...
- 「面试高频」二叉搜索树&双指针&贪心 算法题指北
本文将覆盖 「字符串处理」 + 「动态规划」 方面的面试算法题,文中我将给出: 面试中的题目 解题的思路 特定问题的技巧和注意事项 考察的知识点及其概念 详细的代码和解析 开始之前,我们先看下会有哪些 ...
- JS数组的常用属性或方法
1.length 数组长度 计算数组的长度 var arr=[1,2,3,4,5]; console.log(arr.length);//输出结果是5 2. push() 添加元素 向数组尾部添加新元 ...
- js 数组详解(javascript array)
Array Array 对象用于在单个的变量中存储多个值. 构造函数: 1) new Array(); 2) new Array(size); 3) new Array(element0, ...
- JS数组去重的6种算法实现
1.遍历数组法 最简单的去重方法,实现思路:新建一新数组,遍历传入数组,值不在新数组就加入该新数组中:注意点:判断值是否在数组的方法"indexOf"是ECMAScript5 方法 ...
- js数组及常用数学方法
数组方法 清空数组 1: arr.length=0; 2: arr=[]; arr.push() //往数组最后一个添加元素,会待会一个返回值,就是新的数组长度arr.uns ...
- js数组的常用操作
数组合并 var arr=[1,"abc","张三","122"]; var b=["今天天气不错","适合学 ...
随机推荐
- 查漏补缺:OSI七层模型和TCP/IP模型
应用层协议:Telnet.FTP.e-mail等 传输层协议:TCP.UDP.STCP等 网络层协议:IP.ICMP.IGMP等 链路层协议:设备驱动及接口卡
- 选题在线提交系统(html+JS+php)
前言: 作为学习委员还是有挺多的事情要忙的,比如经常统计同学们的课设题目选择结果.如果老师的要求少一点,我还可以轻松一点.但是当老师对选题有种种限制的时候,自己就估计不会那么好办了.这 ...
- Zookeeper的核心概念以及java客户端使用
一.Zookeeper的核心概念 分布式配置中心(存储):disconf(zk).diamond(mysql+http) 1)znode ZooKeeper操作和维护的是一个个数据节点,称为 znod ...
- xshell6使用的命令
我们进入Xshell的界面之后连接上Linux服务器 常用命令: (1)命令ls——列出文件 ls -la 给出当前目录下所有文件的一个长列表,包括以句点开头的“隐藏”文件 ls a* 列出当前目录下 ...
- CentOS7 安装python 3.5 及 pip安装
1.CentOS7 安装Python 的依赖包 # yum install -y zlib-devel bzip2-devel openssl-devel ncurses-devel sqlite-d ...
- 使用EventBus + Redis发布订阅模式提升业务执行性能
前言 最近一直奔波于面试,面了几家公司的研发.有让我受益颇多的面试经验,也有让我感觉浪费时间的面试经历~因为疫情原因,最近宅在家里也没事,就想着使用Redis配合事件总线去实现下具体的业务. 需求 一 ...
- 进阶之路 | 奇妙的Handler之旅
前言 本文已经收录到我的Github个人博客,欢迎大佬们光临寒舍: 我的GIthub博客 需要已经具备的知识: Handler的基本概念及使用 学习导图: 一.为什么要学习Handler? 在Andr ...
- 怎么用Python写一个三体的气候模拟程序
首先声明一下,这个所谓的三体气候模拟程序还是很简单的,没有真的3D效果或数学模型之类的,只不过是一个文字表示的模拟程序.该程序的某些地方可能不太严谨,所以也请各位多多包涵. 所谓三体气候模拟,就是将太 ...
- AJAX 的 Ajax返回数据之前的loading等待效果(gif效果等)
首先,我们通过ajax请求,向后台传递参数,然后后台经过一系列的运算之后向前台返还数据,我希望在等待数据成功返还之前可以展示一个loading.gif图 不废话,在页面上执行点击事件(<a sc ...
- Ansible-安装配置
主机规划 主机名称 操作系统版本 内网IP 外网IP(模拟) 安装软件 ansi-manager CentOS7.5 172.16.1.180 10.0.0.180 ansible ansi-hapr ...