Manacher算法较传统算法的优化之处在于它对每个回文中心寻找回文半径的时候并不是都从半径为1开始找的,而是利用前面已经完成的任务,寻找一个初始的开始搜索的半径大小,复杂度是线性的。

参考博客:https://www.cnblogs.com/z360/p/6375514.html

下面附上hdoj的3068模板:

 #include<bits/stdc++.h>
using namespace std;
typedef unsigned int ui;
typedef long long ll;
typedef unsigned long long ull;
#define pf printf
#define mem(a,b) memset(a,b,sizeof(a))
#define prime1 1e9+7
#define prime2 1e9+9
#define pi 3.14159265
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define scand(x) scanf("%llf",&x)
#define f(i,a,b) for(int i=a;i<=b;i++)
#define scan(a) scanf("%d",&a)
#define dbg(args) cout<<#args<<":"<<args<<endl;
#define inf 0x3f3f3f3f
#define maxn 110005
int n,m,t;
char s[maxn];
char tmp[maxn<<];
int l[maxn<<];//转换后的字符串以及最大回文半径
int manacher(char *st,int len)
{
int t=;
tmp[t++]='$';
tmp[t++]='#';
f(i,,len-)
{
tmp[t++]=s[i];
tmp[t++]='#';
}
tmp[t]=;
int mr=,ans=,pos=;//最长回文右端、最长回文长度以及回文中心
f(i,,t-)
{
l[i]=mr>i?min(mr-i,l[*pos-i]):;
//i>=mr时需要以i为新的回文中心开始搜索回文长度
while(tmp[i-l[i]]==tmp[i+l[i]])l[i]++;
if(i+l[i]>mr)//更新最大回文右端点
{
mr=i+l[i];
pos=i;
}
ans=max(ans,l[i]);
}
return ans-;//每次回文串长度为2*k+1时,多余字符为k+1个,有k个属于原串的字符
}
int main()
{
//freopen("input.txt","r",stdin);
//freopen("output.txt","w",stdout);
std::ios::sync_with_stdio(false);
while(scanf("%s",s)!=EOF)
{
int len=strlen(s);
pf("%d\n",manacher(tmp,len));
} }

回文串的Manacher算法的更多相关文章

  1. UVA 11584 Partitioning by Palindromes 划分回文串 (Manacher算法)

    d[i]表示前面i个字符划分成的最小回文串个数, 转移:当第i字符加进来和前面区间j构成回文串,那么d[i] = d[j]+1. 要判断前面的字符j+1到i是不是回文串,可以用Manacher算法预处 ...

  2. 最长回文串(manacher算法)

    ; ; int p[N]; char str[LEN], tmp[N]; //p[i]表示以str[i]为中心的回文往右延伸的 最长长度 void manacher(char* str, int* p ...

  3. 计算字符串的最长回文子串 :Manacher算法介绍

    转自: http://www.open-open.com/lib/view/open1419150233417.html Manacher算法 在介绍算法之前,首先介绍一下什么是回文串,所谓回文串,简 ...

  4. Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法)

    Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法) Given a string s, find the longest pal ...

  5. 最长回文子串的Manacher算法

    对于一个比较长的字符串,O(n^2)的时间复杂度是难以接受的.Can we do better? 先来看看解法2存在的缺陷. 1) 由于回文串长度的奇偶性造成了不同性质的对称轴位置,解法2要对两种情况 ...

  6. 【BZOJ4755】扭动的回文串(Manacher,哈希)

    [BZOJ4755]扭动的回文串(Manacher,哈希) 题面 BZOJ 题解 不要真的以为看见了回文串就是\(PAM,Manacher\)一类就可以过. 这题显然不行啊. 我们主要考虑如何解决跨串 ...

  7. 51nod1089(最长回文子串之manacher算法)

    题目链接: https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1089 题意:中文题诶~ 思路: 我前面做的那道回文子串的题 ...

  8. 最长回文子串(Manacher算法)

    回文字符串,想必大家不会不熟悉吧? 回文串会求的吧?暴力一遍O(n^2)很简单,但当字符长度很长时便会TLE,简单,hash+二分搞定,其复杂度约为O(nlogn), 而Manacher算法能够在线性 ...

  9. POJ 3974 最长回文字串(manacher算法)

    题意:给出一个字符串,求出最长回文字串. 思路:一开始我直接上了后缀数组DC3的解法,然后MLE了.看了DISCUSS发现还有一种计算回文字串更加优越的算法,就是manacher算法.就去学习了一下, ...

随机推荐

  1. shell知多少?

    Shell字面理解就是个"壳",是操作系统(内核)与用户之间的桥梁,充当命令解释器的作用,将用户输入的命令翻译给系统执行.Linux中的shell与Windows下的DOS一样,提 ...

  2. Python---6条件判断与循环

    条件判断 计算机之所以能做很多自动化的任务,因为它可以自己做条件判断. 比如,输入用户年龄,根据年龄打印不同的内容,在Python程序中,用if语句实现: age = 20 if age >= ...

  3. 机器学习Week3

    分类问题(classification problems) y=0 or 1 回归分析/逻辑分析(logistic regression): 目标:令h(x)位于[0,1]之间 逻辑函数/S型函数: ...

  4. 网络健身O2O,能火吗?

       谈到中国想要020的那些项目,总给人一种土豪烧钱的怪异形象,而最终的成败因素也变得简单,也即谁能烧到最后,谁就能称霸市场,可问题在于,前期投入太多,谁也不甘心主动退出,最后,只落得个油尽灯枯.这 ...

  5. Android注解支持Support Annotations详解

    ###注解支持(Support Annotations)Android support library从19.1版本开始引入了一个新的注解库,它包含很多有用的元注解,你能用它们修饰你的代码,帮助你发现 ...

  6. Python——3条件判断和循环

    */ * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:text.cpp * 作者:常轩 * 微信公众号:Worldhe ...

  7. 最强加密算法?AES加解密算法Matlab和Verilog实现

    目录 背景 AES加密的几种模式 基本运算 AES加密原理 Matlab实现 Verilog实现 Testbench 此本文首发于公众号[两猿社],重点讲述了AES加密算法的加密模式和原理,用MATL ...

  8. Dart 运行速度测评与比较

    引言 Dart 是一门优秀的跨平台语言,尽管生态方面略有欠缺,但无疑作为一门编程语言来说,Dart 是很优美,很健壮的,同时也引入了一些先进的编程范式,值得去学习. 测试内容 现在,我们就来测评一下D ...

  9. Java程序员常用的@Component、@Repository、@Controller、@Service系列【案例demo3】

    Java程序员常用的@Component.@Repository.@Controller.@Service系列[案例demo3]   很多程序员通过在类上使用@Repository.@Componen ...

  10. htm5新特性(转)

    转自:http://hyuhan.com/2017/07/06/... 今天来谈谈前端面试中基本上每次一面都会被问到的一个问题,那就是html5的新特性了.这个是学习前端必须掌握的基础知识. 新增的元 ...