Case 1.

本题其实不难,直接模拟就可以了。时间复杂度: \(O(L \times M)\)

Case 2.

考虑一个简单的增强:把原来的:

\[L \leq 10^4,M \leq 10^2
\]

改成:

\[L ,M\leq 10^6
\]

现在我们就不可以直接模拟了,显然考虑一个 \(L \log L\) 级别 的做法。

显然,本题是区间操作,和线段树密不可分。

“砍树”的操作可以视为区间 \(-1\) . 但困难的地方是,如果一个区间多次减\(1\),只需要减\(1\)次。

我们对每个区间记录一个 \(tag\) ,\(tag\) 只会是 \(-1\) 和 \(0\).

\(-1\) 则表示该区间整个被 \(-1\) ;\(0\) 则表示该区间还有没被减过的。

那么,我们区间修改的时候, 只要当前区间的标记是\(-1\)就直接停止;如果包含则标上\(-1\)然后走人;否则一直递归到最底层。

修改的时间复杂度: \(O(M \log L)\).

修改是解决了,那怎么查询结果呢? 我们并没有一个区间和之类的东西啊……

下面我们用一个变量 \(s\) 表示被 \(-1\) (也就是被砍的树)的个数。

从根开始走,只要当前区间的标记是\(-1\),就直接统计掉,停止;否则一直走到最底层。

然后最后答案就是 \(L-s+1\). (不要忘记 \(0\) )

那么你会问了,时间复杂度大概是多少呢?

其实这和查询区间和是一样的,都是将一个区间拆成若干个小区间,因此查询的时间复杂度是\(O(\log L)\).

那么,线段是完美地实现了本题,其时间复杂度为:

\(O(M \log L + \log L) = O(M \log L)\).

注:请不要忘记 \(0,L\) 才是根维护的区间。而不是 \(1,L\) .

#pragma GCC optimize(2)
#include<bits/stdc++.h>
using namespace std; typedef long long ll;
const int N=1e6+1; #define L (i<<1)
#define R (i<<1)+1 inline int read(){char ch=getchar();int f=1;while(ch<'0' || ch>'9') {if(ch=='-') f=-f; ch=getchar();}
int x=0;while(ch>='0' && ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();return x*f;} struct tree{
int l,r,tag;
};
tree t[N<<2];
int n,m; inline void build_tree(int i,int l,int r) {
t[i].l=l; t[i].r=r; t[i].tag=0;
if(l==r) return;
int mid=(l+r)>>1;
build_tree(L,l,mid);
build_tree(R,mid+1,r);
} inline void change(int i,int l,int r) {
// printf("%d %d %d %d %d %d\n",i,t[i].l,t[i].r,l,r,t[i].tag);
if(t[i].tag==-1) return;
if(l<=t[i].l && t[i].r<=r) {t[i].tag=-1;return;}
if(t[i].l==t[i].r) return;
int mid=(t[i].l+t[i].r)>>1;
if(l<=mid) change(L,l,r);
if(r>mid) change(R,l,r);
} int s=0;
inline void query(int i,int l,int r) {
// printf("%d %d %d %d\n",i,l,r,t[i].tag);
if(t[i].tag==-1) {s+=r-l+1;return;}
if(l==r) return; int mid=(l+r)>>1;
if(l<=mid) query(L,l,mid);
if(r>mid) query(R,mid+1,r);
} int main(){
n=read(),m=read();
build_tree(1,0,n);
while(m--) {
int x=read(),y=read();
change(1,x,y);
} query(1,0,n);
printf("%d\n",n-s+1);
return 0;
}

Case3.

下面再考虑一个显然的优化。

将 \(L,M \leq 10^6\),改为:

\(L \leq 2 \times 10^9\),\(M \leq 10^6\).

这时 线段树、差分、离散化 都无法解决这个难题了。

你会发现:其实最简化的题意是:

求\(M\)个集合的并集。

那么就很显然了吧!将 \(M\) 个区间排序(按关键字),然后直接模拟即可。

时间复杂度即为:排序的时间加上线性的递推。 \(O(M \log M + M) = O(M \log M)\).

这样,本题的时间复杂度就抛开了 \(L\).

空间复杂度:\(O(M)\)

#pragma GCC optimize(2)
#include<bits/stdc++.h>
using namespace std; const int N=1e6+1; inline int read(){char ch=getchar();int f=1;while(ch<'0' || ch>'9') {if(ch=='-') f=-f; ch=getchar();}
int x=0;while(ch>='0' && ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();return x*f;} int n,m,ans=0;
pair<int,int>a[N]; int main(){
n=read(),m=read();
for(int i=1;i<=m;i++) a[i].first=read(),a[i].second=read();
sort(a+1,a+1+m);
int nx=a[1].first,ny=a[1].second;
for(int i=2;i<=m;i++) {
if(ny<=a[i].first) ans+=(ny-nx+1),nx=a[i].first,ny=a[i].second; //两个集合没有交集,直接统计
else if(ny<=a[i].second) ny=a[i].second; //有交集则扩展当前集合
} ans+=(ny-nx)+1;
printf("%d\n",n-ans-1); //最后减去被砍的树即可。+1是因为有0这个点。
return 0;
}

洛谷 P1047 校门外的树 题解的更多相关文章

  1. 洛谷P1047校门外的树题解

    题目 此题是一个模拟题,但需要注意的一点就是它的树是从数轴的0开始,所以我们也要从0开始,这样才能实现代码. 代码: #include<iostream> using namespace ...

  2. 洛谷P1047 校门外的树

    P1047 校门外的树 题目描述 某校大门外长度为L的马路上有一排树,每两棵相邻的树之间的间隔都是1米.我们可以把马路看成一个数轴,马路的一端在数轴0的位置,另一端在L的位置:数轴上的每个整数点,即0 ...

  3. 洛谷——P1047 校门外的树

    P1047 校门外的树 题目描述 某校大门外长度为L的马路上有一排树,每两棵相邻的树之间的间隔都是1米.我们可以把马路看成一个数轴,马路的一端在数轴0的位置,另一端在L的位置:数轴上的每个整数点,即0 ...

  4. 洛谷 P1047 校门外的树(待完善)

    链接:https://www.luogu.org/problemnew/show/P1047 题目: 题目描述 某校大门外长度为L的马路上有一排树,每两棵相邻的树之间的间隔都是11米.我们可以把马路看 ...

  5. 洛谷 P1047 校门外的树

    #include<iostream> #include<vector> #include<algorithm> using namespace std; ]; in ...

  6. 洛谷 p1047 校门外的树 线段树做法

    非常easy, 注意一下它是两端开始,也就是说0的位置也有一棵树就好了 我由于太弱了,一道红题交了4,5遍 由于树的砍了就没了,lazy标记最大就是1; 直接贴代码吧 #include<bits ...

  7. Java实现 洛谷 P1047 校门外的树

    import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = ...

  8. 洛谷——P1276 校门外的树(增强版)

    P1276 校门外的树(增强版) 题目描述 校门外马路上本来从编号0到L,每一编号的位置都有1棵树.有砍树者每次从编号A到B处连续砍掉每1棵树,就连树苗也不放过(记 0 A B ,含A和B):幸运的是 ...

  9. 洛谷 P1276 校门外的树(增强版)

    题目描述 校门外马路上本来从编号0到L,每一编号的位置都有1棵树.有砍树者每次从编号A到B处连续砍掉每1棵树,就连树苗也不放过(记 0 A B ,含A和B):幸运的是还有植树者每次从编号C到D 中凡是 ...

随机推荐

  1. Docker容器时间同步问题

    具体操作: 为了保证容器和宿主机之间的时间同步,采用如下参数:-v /etc/localtime:/etc/localtime:ro但是在页面访问的时候时间依然相差8个小时: 该怎么破解! 回复: 1 ...

  2. java基础-略知一二

    Collection Set HashSet LinkedHashSet SortedSet TreeSet List ArrayList 构造方法 LinkedList 构造方法 Map 特性 方法 ...

  3. SYC极客大挑战部分题目writeup

    Welcome 复制黏贴flag即可 我相信你正在与我相遇的路上马不停蹄 关注微信工作号回复"我要flag"即可获得flag 代号为geek的行动第一幕:毒雾初现 发现flag为摩 ...

  4. Leetcode 20题 有效的括号(Valid Parentheses) Java语言求解

    题目描述: 给定一个只包括 '(',')','{','}','[',']' 的字符串,判断字符串是否有效. 有效字符串需满足: 左括号必须用相同类型的右括号闭合. 左括号必须以正确的顺序闭合. 注意空 ...

  5. 云机器同步数据 - rsync

    一.需求 从google cloud云机器上定期同步图片内容,选用了支持增量备份的rsync. 二.rsync概述 rsyn是类unix系统下的数据镜像备份工具 - remote sync,安全性高, ...

  6. JS 增删改查操作XML

    效果图: <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <titl ...

  7. 通读Python官方文档之cgitb

    cgitb CGI脚本异常管理 源代码:Lib/cgitb.py cgitb模块为Python脚本提供了一个特殊的异常管理器.名字有点误导人,它最初设计是为了以HTML格式展示cgi脚本的大量异常信息 ...

  8. vue项目npm run dev 报错Uncaught SyntaxError: Unexpected token <

    目前代码所处位置是micro分支,该分支是从dev分支直接拉下来进行npm run dev的,而dev分支是可以正常运行的,网上的诸多解释是babel转义时候报错,其实对比可见,两个分支不同的地方应该 ...

  9. Mysql数据库定时全库备份

    如下脚本用于mysql全库定时备份 mysql_dump_script.sh #!/bin/bash #保存备份个数,最多保留4个文件 number=4 #备份保存路径 backup_dir=/db/ ...

  10. 蓝牙技术 A2DP AVRCP BlueZ

    BlueZ 做为 linux 标准的协议栈,提供非常多的 profile ,各种的支持,ble , 蓝牙网络,文件传输,a2dp 音频传输. A2DP——Advanced Audio Distribu ...