1. 相比于传统的人工提取特征(边、角等),深度学习是一种Data-Driven Approach。深度学习有统一的框架,喂不同的数据集,可以训练识别不同的物体。而人工提取特征的方式很脆弱,换一个物体就要重新设计特征。

2. 描述图像之间相似程度,可以直接把每个对应像素做减法,然后把差的绝对值累加起来。这个差值的和越小,图片越接近。这是曼哈顿距离L1。

对应像素点的差值的平方累加再开平方,这是欧几里得距离L2。

L1和L2谁更好,这取决于具体问题。但一般来说,如果做差的向量有很具体的含义,比如对于员工分类,向量的每一个元素可能是“工作年限”、“工资”等,这种用L1会更好一点,因为L1更依赖坐标系。

3. K近领域算法是计算当前图片和所有候选图片的相似程度(或者说距离),最近的K个候选中,最多的那个标签就被作为当前图片的标签。K越大,对噪音越鲁棒(当然,也不是越大越好,会有最佳值)。

这种算法的缺点是:1)预测的复杂度太高,需要和每一个训练数据去比较。2)不鲁邦,测试数据和训练数据必须很像,如果有遮挡、旋转之类的,会误认为差别很大。3)维度问题,数据集必须在整个空间很稠密的分布,需要指数级增加的数据集,维度高的时候就很不现实。

4. Hyperparameter:预先设定的参数,而不是算法学习得到的。比如K近领域算法中的K。这种参数是很依赖具体问题的。如何设置Hyperparameter呢?

  方案一:在训练集上表现最好的。这个方案是不行的,因为我们在乎的不是在训练集上表现怎么样,而是在乎在没见过的测试集上表现好。或者说方案一并不能保证很好的泛化能力。

  方案二:把数据集分为训练集和测试集,选在测试集上最好的。这个方案的问题和方案一一样,依旧不能保证很好的泛化能力。

  方案三:把数据集分为训练集、验证集、测试集,根据验证集上的表现来选择hyperparameter,然后再在测试集上评估。这种方案很好。对于很多hyperparameter的情况,验证集最好也设定的更大一点。  

  方案四:把数据集分为n组,交叉验证。随机挑选n-2组用来训练,1组用来验证,1组用来测试。这种方法比较适合小数据集,在深度学习中,由于训练的代价太大,所以用的也不算多这种方案。

5. 深度学习的框架像是拼乐高积木,而线性回归是最基本最好用的最广泛使用的积木。

6. 深度学习的训练过程就是训练出一组参数W,在预测x的时候计算y=f(x,W),W的每一行都是一个template,对应一个标签,计算出的y是一个向量,每个元素对应一个标签的相似程度,最大的值就对应预测出的标签。深度学习的框架反映在函数f上。

对于线性回归,f就是简单相乘,f(x,W) = Wx。

cs231n spring 2017 lecture2 Image Classification的更多相关文章

  1. cs231n spring 2017 lecture2 Image Classification 听课笔记

    1. 相比于传统的人工提取特征(边.角等),深度学习是一种Data-Driven Approach.深度学习有统一的框架,喂不同的数据集,可以训练识别不同的物体.而人工提取特征的方式很脆弱,换一个物体 ...

  2. cs231n spring 2017 lecture11 Detection and Segmentation 听课笔记

    1. Semantic Segmentation 把每个像素分类到某个语义. 为了减少运算量,会先降采样再升采样.降采样一般用池化层,升采样有各种"Unpooling"." ...

  3. cs231n spring 2017 lecture11 Detection and Segmentation

    1. Semantic Segmentation 把每个像素分类到某个语义. 为了减少运算量,会先降采样再升采样.降采样一般用池化层,升采样有各种“Unpooling”.“Transpose Conv ...

  4. cs231n spring 2017 lecture13 Generative Models 听课笔记

    1. 非监督学习 监督学习有数据有标签,目的是学习数据和标签之间的映射关系.而无监督学习只有数据,没有标签,目的是学习数据额隐藏结构. 2. 生成模型(Generative Models) 已知训练数 ...

  5. cs231n spring 2017 lecture9 CNN Architectures 听课笔记

    参考<deeplearning.ai 卷积神经网络 Week 2 听课笔记>. 1. AlexNet(Krizhevsky et al. 2012),8层网络. 学会计算每一层的输出的sh ...

  6. cs231n spring 2017 lecture7 Training Neural Networks II 听课笔记

    1. 优化: 1.1 随机梯度下降法(Stochasitc Gradient Decent, SGD)的问题: 1)对于condition number(Hessian矩阵最大和最小的奇异值的比值)很 ...

  7. cs231n spring 2017 Python/Numpy基础 (1)

    本文使根据CS231n的讲义整理而成(http://cs231n.github.io/python-numpy-tutorial/),以下内容基于Python3. 1. 基本数据类型:可以用 prin ...

  8. cs231n spring 2017 lecture13 Generative Models

    1. 非监督学习 监督学习有数据有标签,目的是学习数据和标签之间的映射关系.而无监督学习只有数据,没有标签,目的是学习数据额隐藏结构. 2. 生成模型(Generative Models) 已知训练数 ...

  9. cs231n spring 2017 lecture9 CNN Architectures

    参考<deeplearning.ai 卷积神经网络 Week 2 听课笔记>. 1. AlexNet(Krizhevsky et al. 2012),8层网络. 学会计算每一层的输出的sh ...

随机推荐

  1. 【mui webAPP】HBuilder创建的iOS平台设置沉浸式状态栏

    应用占用全屏区域,而系统状态栏需要预留出系统状态栏高度. HBuilder创建的应用默认不使用沉浸式状态栏样式,需要进行如下配置开启:打开应用的manifest.json文件,切换到代码视图,在plu ...

  2. 学习SEO之7天精通SEO

    这本书大致看了一下,对于SEO基本上有了一个初步的认识,附上链接以供学习之用. 百度网盘:https://pan.baidu.com/s/1Bntzh2YF4tBd2AYAL1Q8vQ 心得:1.SE ...

  3. ubuntu服务器上配置tomcat

    前言 嗯,最近想在自己的腾讯云服务器上跑个项目玩玩,由于服务器是重装的系统,所以,只能自己手动装tomcat. 不过,tomcat是基于java的,必须又java环境tomcat才能够使用,因此首先要 ...

  4. Linux-让程序不能多次运行

    1.因为守护进程是长时间运行而不退出的,因此./a.out执行一次就有一个进程,执行多次就有多个进程. 2.这样并不是我们想要的.我们的守护进程一般都是服务器,服务器程序只要运行一个就够了,多次同时运 ...

  5. 浅谈对RabbitMQ的认识

    一.什么是消息队列?什么时候使用它? 在传统的web架构中(此处特指Java SSM架构),用户在web中进行了某项需要和后台产生交互的操作后,一般都要开启一个session,从view层开始,由co ...

  6. PAT Advanced 1024 Palindromic Number (25) [数学问题-⼤整数相加]

    题目 A number that will be the same when it is written forwards or backwards is known as a Palindromic ...

  7. SVN提交时忽略不必提交的文件夹和文件,如node_modules

    空白处右键>选中TortoiseSVN>设置(settings)>常规设置(General)>Subversion>编辑(edit)>在弹出的config文件中找g ...

  8. tensorflow object detection api android

    https://blog.csdn.net/weixin_40355324/article/details/80651350

  9. Redis--初识Redis

    Redis 是一个远程内存数据库,它不仅性能强劲,而且还具有复制特性以及为解决问题而生的独一无二的数据模型.Redis 提供了 5 种不同类型的数据结构,各式各样的问题都可以很自然的映射到这些数据结构 ...

  10. UVa202

    刚刚开始写的适合感觉是转换成字符然后开始遍历一遍,后面发现各种不行,就回去看了看题目,重新构思,写了好久还是WA,最后只能看下大神的操作(我太菜了). 先简单梳理下题目意思:首先给出两个数,然后这两个 ...