1.roi_pooling层是先利用spatial_scale将region proposal映射到feature map上,然后利用pooled_w、pooled_h分别将映射后的框的长度、宽度等分形成bin,最后对每个bin进行max_pooling,这其实就是一个spp-net的过程(只不过sppnet使用多个等分尺寸,这里只使用一个等分尺寸),因为他就是为了将不同大小的框都处理成相同的长方体(这也是roi_pooling的本质,对任何大小的框都是相同的输出,这样不用向rcnn那样resize图片或者resize region proposal),其实每一个点就是一个值,就有点像用固定长度进行编码。

2.roi_pooling层后面接的是一个全连接层,roi_pooling池化后生成的应该是一个固定大小的长方体(或者说正方体),即(a,b,c,d),因为pooling是在每个channel进行,pooling前和pooling后的channel应该不变;每个channel的大小变为pooled_w*pooled_h,因为roi_pooling将每个channel的宽度均分成pooled_w份,高度均分成pooled_h份,在每份里max_pooling,所以大小就变成pooled_w*pooled_h。

比如prototxt里roi_pooling的设置是这样:

roi_pooling_param {
    pooled_w: 6
    pooled_h: 6
    spatial_scale: 0.0625 # 1/16

}

那输出的shape就是(batch,channel,6,6)

下面是roi_pooling的源码,可以看到roi_pooling的输出的shape是:

  第一维:rois的个数

  第二维:conv5的channel个数

  第三维:pooled_height_,在高度上等分然后提取的个数

  第四维:pooled_width_,在宽度上等分然后提取的个数

这个问题依旧没有解决,到底batch是怎么回事

这样一个长方体是不能和全连接层直接使用的,开始以为roi_pooling层将这个转换成了batch个vector,vector的大小是channel * w * h,但后来发现这个操作其实是在InnerProduct实现的。

这是InnerProduct的cpp源码,可以看到,会先从inner_product_param的axis读取一个值,这个值其实就是要进行flatten的维度的起点

去caffe.proto里面找InnerProduct这一层的参数,可以发现axis默认是1,也就是从channel那一维开始flatten。

也就是说roi_pooling后面接的那一层InnerProduct先把roi_pooling的输出转换成(roi的个数,channel*width*height),然后每个roi进行InnerProduct计算。

CanonicalAxisIndex这个函数在blob.hpp里面定义了。要寻找这个函数的定义,你可以看到是bottom在调用这个函数,那一定是在blob里面定义,只是看到底是在cpp还是hpp了

这个函数是提供负数也可以进行索引

faster rcnn细节总结的更多相关文章

  1. 深度学习原理与框架-卷积网络细节-三代物体检测算法 1.R-CNN 2.Fast R-CNN 3.Faster R-CNN

    目标检测的选框操作:第一步:找出一些边缘信息,进行图像合并,获得少量的边框信息 1.R-CNN, 第一步:进行图像的选框,对于选出来的框,使用卷积计算其相似度,选择最相似ROI的选框,即最大值抑制RO ...

  2. Faster RCNN 的细节补充

    一.faster rcnn的结构 通过上面的结构,我们知道该faster rcnn前面以VGG16为框架,加入RPN层,最后做分类层. 采用VGG16相对ZF来说慢一点,但是精度也高一点. 二.RPN ...

  3. r-cnn学习系列(三):从r-cnn到faster r-cnn

    把r-cnn系列总结下,让整个流程更清晰. 整个系列是从r-cnn至spp-net到fast r-cnn再到faster r-cnn.  RCNN 输入图像,使用selective search来构造 ...

  4. [原创]Faster R-CNN论文翻译

    Faster R-CNN论文翻译   Faster R-CNN是互怼完了的好基友一起合作出来的巅峰之作,本文翻译的比例比较小,主要因为本paper是前述paper的一个简单改进,方法清晰,想法自然.什 ...

  5. 读论文系列:Object Detection NIPS2015 Faster RCNN

    转载请注明作者:梦里茶 Faster RCNN在Fast RCNN上更进一步,将Region Proposal也用神经网络来做,如果说Fast RCNN的最大贡献是ROI pooling layer和 ...

  6. Faster R-CNN 的 RPN 是啥子?

     Faster R-CNN,由两个模块组成: 第一个模块是深度全卷积网络 RPN,用于 region proposal; 第二个模块是Fast R-CNN检测器,它使用了RPN产生的region p ...

  7. Faster R-CNN

    1.R-CNN R-CNN网络架构图 R-CNN网络框架流程 1)原图像经过 selective search算法提取约2000个候选框 2)候选框缩放到同一大小,原因是上图的ConvNet需要输入图 ...

  8. Faster RCNN 学习笔记

    下面的介绍都是基于VGG16 的Faster RCNN网络,各网络的差异在于Conv layers层提取特征时有细微差异,至于后续的RPN层.Pooling层及全连接的分类和目标定位基本相同. 一). ...

  9. Faster R-CNN:详解目标检测的实现过程

    本文详细解释了 Faster R-CNN 的网络架构和工作流,一步步带领读者理解目标检测的工作原理,作者本人也提供了 Luminoth 实现,供大家参考.   Luminoth 实现:https:// ...

随机推荐

  1. js引用类型的赋值

    在开发中,有时候需要将数组或者对象的值赋予其他另一个变量,但是两个变量之间会相互影响,因为在将引用类型的值赋给其他变量时,赋予的其实是内存中的存储地址 var arr = [1,2,3,4,5] va ...

  2. Weekly Contest 111-------->944. Delete Columns to Make Sorted

    We are given an array A of N lowercase letter strings, all of the same length. Now, we may choose an ...

  3. JS中的柯里化(currying) 转载自张鑫旭-鑫空间-鑫生活[http://www.zhangxinxu.com]

    JS中的柯里化(currying) by zhangxinxu from http://www.zhangxinxu.com 本文地址:http://www.zhangxinxu.com/wordpr ...

  4. java 程序从linux 上接收不可见字符

    近期在写一个简单的小java程序,希望在运行java 程序时,从shell 中接收参数,并且参数的内容为不可见字符. 开始时还觉得可以使用"\"之类的转义符来写,后来发现java程 ...

  5. vmware vSAN 入门

    参考:https://docs.vmware.com/cn/VMware-vSphere/6.5/com.vmware.vsphere.virtualsan.doc/GUID-18F531E9-FF0 ...

  6. Android 兼容包

    http://www.cnblogs.com/kissazi2/p/3644848.html 在AndoridManifest.xml文件中可以查看项目最低支持的SDK版本 <uses-sdk ...

  7. SpringBoot | quartz | @DisallowConcurrentExecution

    注释放在job类上, 作用: 将该注解加到job类上,告诉Quartz不要并发地执行同一个job定义(这里指特定的job类)的多个实例.

  8. self.navigationController.navigationBar.translucent = YES航栏的属性默认 YES是透明效果并且主view不会偏移 NO是导航栏不透明 主view会向下偏移64px

    交友:微信号 dwjluck2013 从iOS7开始,苹果对navigationBar进行了模糊处理,并把self.navigationController.navigationBar.translu ...

  9. Python 数字模块

    Python中的数字模块 math模块 random模块 Decimal模块 - 没有损失的小数 Fraction模块 - 可以计算分数

  10. Codeforces Round #533(Div. 2) A.Salem and Sticks

    链接:https://codeforces.com/contest/1105/problem/A 题意: 给n个数,找到一个数t使i(1-n)∑|ai-t| 最小. ai-t 差距1 以内都满足 思路 ...