数根就是不断地求这个数的各位数之和,直到求到个位数为止。所以数根一定和该数模9同余,但是数根又是大于零小于10的,所以数根模9的余数就是它本身,也就是说该数模9之后余数就是数根。

证明:

假设有一个n位的10进制数,我们写成,其中表示从低到高的每一位
因为
那么
也就是一个数和它的各数位之和的模9相同。
不如我们把这个操作记为f即
也就是
所以

也就是说每做一次这样的操作,它对于9的模始终是不变的
所以最终求出的数根和原数对9的模相同。

例子:(12345) % 9 = (1 + 2 + 3 + 4 + 5) % 9 = 12 % 9 = (1 +2) % 9 = 3 % 9 = 3。

总结:对任意数%9,那么言下之意是在被膜数成为负数之前我能抽掉任意个9而不改变膜的结果。任意正整数可以拆成a*10^b的形式,10^b膜9一定得1,就是说a*10^b膜9==a膜9。

如何证明一个数的数根(digital root)就是它对9的余数?的更多相关文章

  1. 数字根(digital root)

    来源:LeetCode 258  Add Dights Question:Given a non-negative integer  num , repeatedly add all its digi ...

  2. hdoj1013(数根,大数,九余数算法)

    Digital Roots Problem Description The digital root of a positive integer is found by summing the dig ...

  3. Openjudge-NOI题库-数根

    题目描述 Description 数根可以通过把一个数的各个位上的数字加起来得到.如果得到的数是一位数,那么这个数就是数根.如果结果是两位数或者包括更多位的数字,那么再把这些数字加起来.如此进行下去, ...

  4. C++:函数求数根(总算写出来了。。。。)

    [问题描述] 数根问题递归求解:输入n个正整数(输入格式中第一行为整数个数n,后续行为n个整数),输出各个数的数根.数根的定义:对于一个正整数n,我们将它的各个位相加得到一个新的数字,如果这个数字是一 ...

  5. 树根 Digital root

    数根 (又称数字根Digital root)是自然数的一种性质.换句话说.每一个自然数都有一个数根.数根是将一正整数的各个位数相加(即横向相加),若加完后的值大于等于10的话,则继续将各位数进行横向相 ...

  6. Digital root(数根)

    关于digital root可以参考维基百科,这里给出基本定义和性质. 一.定义 数字根(Digital Root)就是把一个数的各位数字相加,再将所得数的各位数字相加,直到所得数为一位数字为止.而这 ...

  7. 九度OJ 1124:Digital Roots(数根) (递归)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:2963 解决:1066 题目描述: The digital root of a positive integer is found by s ...

  8. 1. 数字根(Digital Root)

    数字根(Digital Root)就是把一个自然数的各位数字相加,再将所得数的各位数字相加,直到所得数为一位数字为止.而这个一位数便是原来数字的数字根.例如: 198的数字根为9(1+9+8=18,1 ...

  9. [hdu5389 Zero Escape]数根的性质,DP

    题意:把n个数(1-9)放到A集合和B集合里面去,使得A集合里面的数的数根为a,B集合里面的数的数根为b,也可以只放在A或B任一个集合里面.求方法总数.比如A={2,4,5},则A的数根为[2+4+5 ...

随机推荐

  1. Postgres安装详解

    PG安装 一.基础包的安装(yum源的配置,可以采用光盘挂载,及ftp yum源,针对外网环境忽略此步): yum -y install wget tcpdump glibc libgcc gcc g ...

  2. Codeforces Round #464 (Div. 2) C. Convenient For Everybody

    C. Convenient For Everybody time limit per test2 seconds memory limit per test256 megabytes Problem ...

  3. 2、大O表示法

    一.大O表示法 大O表示法不是一种算法.它是用来表示一个算法解决问题的速度的快慢.一般我们描述一件事情完成的快慢是用时间描述的,比如说我完成一道计算题用了多少分钟.但算法的运算是很难用准确的时间来描述 ...

  4. POJ3320 尺取法的正确使用法

    一.前言及题意: 最近一直在找题训练,想要更加系统的补补思维,补补漏洞什么的,以避免被个类似于脑筋急转弯的题目干倒,于是在四处找书,找了红书.蓝书,似乎都有些不尽如人意.这两天看到了日本人的白书,重新 ...

  5. Python中__str__和__repr__的区别

    Python有一个内置的函数叫repr,它能把一个对象用字符串的形式表达出来以便辨认,这就是“字符串表示形式”.repr就是通过__repr__这个特殊方法来得到一个对象的字符串表示形式.如果没有实现 ...

  6. pycharm中某些方法被标黄的原因及解决办法

    在编辑python文件时,会遇到上图所示,函数方法被标黄的问题,但是不影响使用. 引起原因:,如果不报错说明,这是因为你配置的python解释器中有该方法,但是pycharm没有找到这个方法,即加载失 ...

  7. Flask 中蓝图的两种表现形式

    最近在学Flask,特有的@X.route 很适合RESTfuld API, 一般小型应用,在一个py文件中就可以完成,但是维护起来比较麻烦. 想体验Django那样的MVT模式, 看到 Flask提 ...

  8. laravel5.2总结--数据库操作

    1 配置信息 1.1配置目录: config/database.php 1.2配置多个数据库 //默认的数据库 'mysql' => [ 'driver' => 'mysql', 'hos ...

  9. [网站公告]又拍云API故障造成图片无法上传(已恢复)

    大家好,18:00左右开始,又拍云API出现故障,调用图片上传API时出现错误:“The remote server returned an error: (403) Forbidden.”,造成图片 ...

  10. 记一次Entity Framework 项目的优化过程

    在博客园看了不少其他大神的经验.今天也抽空贡献点自己的经验(并不是说自己也是大神..小弟还只新手程序员去年才毕业的) 好了废话不多说,直接进入主题.(具体的好坏各位看官就随便看看吧..没有什么好坏之分 ...