题目大意:
  $q(q\leq50)$组询问,对于给定的$n(n\leq10^7)$,求$\displaystyle\sum_{i=0}^n\sum_{j=0}^n\sum_{k=0}^n[\gcd(i,j,k)=1]$。

思路:
  $原式=\sum_{d=1}^n(\lfloor\frac{n}{d}\rfloor^3+3\lfloor\frac{n}{d}\rfloor^2+3\lfloor\frac{n}{d}\rfloor)\mu(d)$。数论分块即可。

 #include<cstdio>
#include<cctype>
typedef long long int64;
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const int N=,M=;
bool vis[N];
int mu[N],sum[N],p[M];
inline void sieve() {
mu[]=;
for(register int i=;i<N;i++) {
if(!vis[i]) {
p[++p[]]=i;
mu[i]=-;
}
for(register int j=;j<=p[]&&i*p[j]<N;j++) {
vis[i*p[j]]=true;
if(i%p[j]==) {
mu[i*p[j]]=;
break;
} else {
mu[i*p[j]]=-mu[i];
}
}
}
for(register int i=;i<N;i++) {
sum[i]=sum[i-]+mu[i];
}
}
int main() {
sieve();
for(register int T=getint();T;T--) {
const int n=getint();
int64 ans=;
for(register int i=,j;i<=n;i=j+) {
j=n/(n/i);
ans+=(sum[j]-sum[i-])*((int64)(n/i)*(n/i)*(n/i)+(int64)(n/i)*(n/i)*+(n/i)*);
}
printf("%lld\n",ans);
}
return ;
}

原式=\sum_{d=1}^n(\lfloor\frac{n}{d}\rfloor^3+3\lfloor\frac{n}{d}\rfloor^2+3\lfloor\frac{n}{d}\rfloor)\mu(d)$。数论分块即可。

[SPOJ7001]VLATTICE - Visible Lattice Points的更多相关文章

  1. SPOJ1007 VLATTICE - Visible Lattice Points

    VLATTICE - Visible Lattice Points no tags  Consider a N*N*N lattice. One corner is at (0,0,0) and th ...

  2. SPOJ VLATTICE Visible Lattice Points (莫比乌斯反演基础题)

    Visible Lattice Points Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at ...

  3. [SPOJ VLATTICE]Visible Lattice Points 数论 莫比乌斯反演

    7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0, ...

  4. SPOJ 7001 VLATTICE - Visible Lattice Points(莫比乌斯反演)

    题目链接:http://www.spoj.com/problems/VLATTICE/ 题意:求gcd(a, b, c) = 1    a,b,c <=N 的对数. 思路:我们令函数g(x)为g ...

  5. SPOJ—VLATTICE Visible Lattice Points(莫比乌斯反演)

    http://www.spoj.com/problems/VLATTICE/en/ 题意: 给一个长度为N的正方形,从(0,0,0)能看到多少个点. 思路:这道题其实和能量采集是差不多的,只不过从二维 ...

  6. SPOJ VLATTICE Visible Lattice Points 莫比乌斯反演 难度:3

    http://www.spoj.com/problems/VLATTICE/ 明显,当gcd(x,y,z)=k,k!=1时,(x,y,z)被(x/k,y/k,z/k)遮挡,所以这道题要求的是gcd(x ...

  7. SPOJ VLATTICE Visible Lattice Points 莫比乌斯反演

    这样的点分成三类 1 不含0,要求三个数的最大公约数为1 2 含一个0,两个非零数互质 3 含两个0,这样的数只有三个,可以讨论 针对 1情况 定义f[n]为所有满足三个数最大公约数为n的三元组数量 ...

  8. SPOJ VLATTICE - Visible Lattice Points 【“小”大数加减】

    题目链接 一道比较简单的莫比乌斯反演,不过ans会爆long long,我是用结构体来存结果的,结构体中两个LL型变量分别存大于1e17和小于1e17的部分 #include<bits/stdc ...

  9. SPOJ VLATTICE Visible Lattice Points(莫比乌斯反演)题解

    题意: 有一个\(n*n*n\)的三维直角坐标空间,问从\((0,0,0)\)看能看到几个点. 思路: 按题意研究一下就会发现题目所求为. \[(\sum_{i=1}^n\sum_{j=1}^n\su ...

随机推荐

  1. Java集合---简介

    概念 集合可以理解为一个动态的对象数组,不同的是集合中的对象内容可以任意扩充.Java最基本的集合接口:Collection接口 集合的特点 性能高 容易扩展和修改 Collection的常用子类 L ...

  2. java web知识点

    java web知识点 1.Java知识点 基本数据类型,面向对象,异常,IO,NIO,集合,多线程,JVM,高级特性. 2.web知识点 JSP,Serlvet,JDBC,Http 掌握Cookie ...

  3. Python数据结构之列表、元组及字典

    一位大牛Niklaus Wirth曾有一本书,名为<Algorithms+Data Structures=Programs>,翻译过来也就是算法+数据结构=程序.而本文就是介绍一下Pyth ...

  4. 【Swap Nodes in Pairs】cpp

    题目: Given a linked list, swap every two adjacent nodes and return its head. For example,Given 1-> ...

  5. Python基础-week02 Python的常用数据类型

    一.模块初识 import导入Py自带模块例如os,sys等及其自己编写的Py文件,导入到其他文件中,默认查找当前目录.如果不在同一目录,会报错,将该自定义py文件模块放到site-packages目 ...

  6. manjaro安装anaconda出错

    出错信息: ==> Creating package "anaconda"...  -> Generating .PKGINFO file...  -> Gene ...

  7. [oldboy-django][2深入python] orm中auto_now =True, antu_now_add=True的应用

    DateTimeField.auto_now 这个参数的默认值为false,设置为true时,能够在保存该字段时,将其值设置为当前时间,并且每次修改model,都会自动更新.因此这个参数在需要存储“最 ...

  8. redis 集群添加新节点

    准备好需要添加的节点:如何创建节点 启动创建的节点: 启动成功: 添加新节点:redis-cli --cluster add-node 127.0.0.1:7006 127.0.0.1:7000  第 ...

  9. Codeforces Round #418 (Div. 2) A+B+C!

    终判才知道自己失了智.本场据说是chinese专场,可是请允许我吐槽一下题意! A. An abandoned sentiment from past shabi贪心手残for循环边界写错了竟然还过了 ...

  10. linux系统——fread()与read()函数族区别

    fread与read区别: 1,fread是带缓冲的,read不带缓冲. 2,fopen是标准c里定义的,open是POSIX中定义的. 3,fread可以读一个结构.read在linux/unix中 ...