题目大意:
  $q(q\leq50)$组询问,对于给定的$n(n\leq10^7)$,求$\displaystyle\sum_{i=0}^n\sum_{j=0}^n\sum_{k=0}^n[\gcd(i,j,k)=1]$。

思路:
  $原式=\sum_{d=1}^n(\lfloor\frac{n}{d}\rfloor^3+3\lfloor\frac{n}{d}\rfloor^2+3\lfloor\frac{n}{d}\rfloor)\mu(d)$。数论分块即可。

 #include<cstdio>
#include<cctype>
typedef long long int64;
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const int N=,M=;
bool vis[N];
int mu[N],sum[N],p[M];
inline void sieve() {
mu[]=;
for(register int i=;i<N;i++) {
if(!vis[i]) {
p[++p[]]=i;
mu[i]=-;
}
for(register int j=;j<=p[]&&i*p[j]<N;j++) {
vis[i*p[j]]=true;
if(i%p[j]==) {
mu[i*p[j]]=;
break;
} else {
mu[i*p[j]]=-mu[i];
}
}
}
for(register int i=;i<N;i++) {
sum[i]=sum[i-]+mu[i];
}
}
int main() {
sieve();
for(register int T=getint();T;T--) {
const int n=getint();
int64 ans=;
for(register int i=,j;i<=n;i=j+) {
j=n/(n/i);
ans+=(sum[j]-sum[i-])*((int64)(n/i)*(n/i)*(n/i)+(int64)(n/i)*(n/i)*+(n/i)*);
}
printf("%lld\n",ans);
}
return ;
}

原式=\sum_{d=1}^n(\lfloor\frac{n}{d}\rfloor^3+3\lfloor\frac{n}{d}\rfloor^2+3\lfloor\frac{n}{d}\rfloor)\mu(d)$。数论分块即可。

[SPOJ7001]VLATTICE - Visible Lattice Points的更多相关文章

  1. SPOJ1007 VLATTICE - Visible Lattice Points

    VLATTICE - Visible Lattice Points no tags  Consider a N*N*N lattice. One corner is at (0,0,0) and th ...

  2. SPOJ VLATTICE Visible Lattice Points (莫比乌斯反演基础题)

    Visible Lattice Points Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at ...

  3. [SPOJ VLATTICE]Visible Lattice Points 数论 莫比乌斯反演

    7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0, ...

  4. SPOJ 7001 VLATTICE - Visible Lattice Points(莫比乌斯反演)

    题目链接:http://www.spoj.com/problems/VLATTICE/ 题意:求gcd(a, b, c) = 1    a,b,c <=N 的对数. 思路:我们令函数g(x)为g ...

  5. SPOJ—VLATTICE Visible Lattice Points(莫比乌斯反演)

    http://www.spoj.com/problems/VLATTICE/en/ 题意: 给一个长度为N的正方形,从(0,0,0)能看到多少个点. 思路:这道题其实和能量采集是差不多的,只不过从二维 ...

  6. SPOJ VLATTICE Visible Lattice Points 莫比乌斯反演 难度:3

    http://www.spoj.com/problems/VLATTICE/ 明显,当gcd(x,y,z)=k,k!=1时,(x,y,z)被(x/k,y/k,z/k)遮挡,所以这道题要求的是gcd(x ...

  7. SPOJ VLATTICE Visible Lattice Points 莫比乌斯反演

    这样的点分成三类 1 不含0,要求三个数的最大公约数为1 2 含一个0,两个非零数互质 3 含两个0,这样的数只有三个,可以讨论 针对 1情况 定义f[n]为所有满足三个数最大公约数为n的三元组数量 ...

  8. SPOJ VLATTICE - Visible Lattice Points 【“小”大数加减】

    题目链接 一道比较简单的莫比乌斯反演,不过ans会爆long long,我是用结构体来存结果的,结构体中两个LL型变量分别存大于1e17和小于1e17的部分 #include<bits/stdc ...

  9. SPOJ VLATTICE Visible Lattice Points(莫比乌斯反演)题解

    题意: 有一个\(n*n*n\)的三维直角坐标空间,问从\((0,0,0)\)看能看到几个点. 思路: 按题意研究一下就会发现题目所求为. \[(\sum_{i=1}^n\sum_{j=1}^n\su ...

随机推荐

  1. Java装箱和拆箱

    https://www.cnblogs.com/dolphin0520/p/3780005.html http://mxdxm.iteye.com/blog/2028196 装箱过程是通过调用包装器的 ...

  2. win8 远程桌面时提示凭证不工作问题的终极解决办法

    环境说明 远程办公电脑(放置于公司.自用办公电脑.win8系统) 远程连接客户机(放置于家中.家庭日常所用.win8系统) 故障现象 最近在使用远程桌面连接公司的办公电脑时,突然发现win8系统总是无 ...

  3. log4j2用asyncRoot配置异步日志是如何使用disruptor

    用asyncRoot配置对应的对接disruptor类是AsyncLoggerConfigDisruptor,用Log4jContextSelector启动参数配置全局异步的对应的对接disrupto ...

  4. Pass Data Between ASP.NET Pages

    There is the data to send in current page <asp:TextBox ID="DataToSendTextBox" runat=&qu ...

  5. RSA进阶之共模攻击

    适用场景: 同一个n,对相同的m进行了加密,e取值不一样. e1和e2互质,gcd(e1,e2)=1 如果满足上述条件,那么就可以在不分解n的情况下求解m 原理 复杂的东西简单说: 如果gcd(e1, ...

  6. Python基础-week06 面向对象编程基础

    一.面向对象编程 1.面向过程 与 面向对象编程 面向过程的程序设计: 核心是 过程二字,过程指的是解决问题的步骤,即先干什么再干什么......面向过程的设计就好比精心设计好一条流水线,是一种机械式 ...

  7. HTML textarea 无法修改 value 的问题

    当设置了  textarea  的 value 后,发现页面的输入框无法输入值, <textarea id="></textarea> 解决方法: 只需将值设置在  ...

  8. Solr配置Ikanalyzer分词器

    上一篇文章讲解在win系统中如何安装solr并创建一个名为test_core的Core,接下为text_core配置Ikanalyzer 分词器 1.打开text_core的instanceDir目录 ...

  9. win8中写好的程序,在win7中没办法运行

     没有安装相应版本的,net framework win8自带4.0 win7自带2.0 所以4.0及其以上的程序在win7跑必须安装4.0及其以上版本的framework

  10. 只显示前几条数据的sql语句写法 七种数据库中Select Top的使用方法

    七种数据库中Select Top的使用方法 1. Oracle数据库 SELECT * FROM TABLENAME WHERE ROWNUM <= N 2. Infomix数据库 SELECT ...